CHEMISTRY

Single Correct Choice Type This section contains 45 questions numbered 1 to 45. Each question has 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct. 9. Assertion: Although aluminium is above hydrogen in 1. It is easier to liquefy ammonia than oxygen because electrochemical series, it is stable in air and water. (a) it is easier to compress oxygen than NH₃ **Reason:** The thin protective layer of oxide (Al₂O₂) on (b) NH₃ has a very low critical temperature as compared the surface protects the aluminium. to O₂ (a) If both assertion and reason are true and reason (c) O_2 has a higher value of van der Waals constant a is the correct explanation of assertion and higher critical temperature than NH₃ (b) If both assertion and reason are true but reason (d) NH₃ has a higher value of van der Waals constant is not the correct explanation of assertion. a and higher critical temperature (c) If assertion is true but reason is false. 2. What will be the enthalpy of combustion of carbon to (d) If both assertion and reason are false produce carbon monoxide on the basis of data given 10. Glycerine can be purified by below: (a) vacuum distillation (b) simple distillation $C_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)} - 393.4 \text{ kJ}$ (c) steam distillation (d) fractional distillation $CO_{(g)} + \frac{1}{2}O_{2(g)} \longrightarrow CO_{2(g)} - 283.0 \text{ kJ}$ 11. The correct stability order for the following species (a) + 676.4 kJ (b) -676.4 kJ (I) (II)(c) -110.4 kJ (d) +110.4 kJ 3. What will be the change in internal energy when 12 kJ (III) (IV) of work is done on the system and 2 kJ of heat is given by the system? (a) (II) > (IV) > (I) > (III)(b) (I) > (II) > (III) > (IV)(b) - 10 kJ (a) + 10 kJ (c) (II) > (I) > (IV) > (III)(d) (I) > (III) > (II) > (IV)(c) + 5 kJ (d) - 5 kJ 12. The addition of HBr to 1-butene gives a mixture of 4. If the equilibrium constant for the reaction, products (I), (II) and (III): $2XY \longrightarrow X_2 + Y_2$ is 81, What is the value of Br (I) H₅C₂¹¹¹⁰⁰⁰⁰ CH₃ equilibrium constant for the reaction (II) H¹¹¹¹¹¹¹¹¹ $XY = \frac{1}{2}X_2 + \frac{1}{2}Y_2$ (b) 9 (a) 81 (III) CH₃-CH₂-CH₂-CH₂-Br (c) 6561 (d) 40.5 The mixture consists of 5. What is the percentage dissociation of 0.1 M solution (a) (I) and (II) as major and (III) as minor products of acetic acid? ($K_a = 10^{-5}$) (b) (II) as major, (I) and (III) as minor products (a) 10% (b) 100% (c) (II) as minor, (I) and (III) as major products (c) 1% (d) 0.01% (d) (I) and (II) as minor and (III) as major products. 6. Which is not true about the oxidation state of the 13. Sewage containing organic waste should not be following elements? disposed in water bodies because it causes major water (a) Sulphur +6 to -2(b) Carbon +4 to -4 pollution. Fish in such a polluted water die because of (c) Chlorine +7 to -1(d) Nitrogen +3 to -1 (a) large number of mosquitoes 7. Assertion: Permanent hardness of water can be (b) increase in the amount of dissolved oxygen removed by using washing soda. (c) decrease in the amount of dissolved oxygen in Reason: Washing soda reacts with soluble calcium and water magnesium chlorides and sulphates in hard water to (d) clogging of gills by mud form insoluble carbonates 14. The density of a metal which crystallises in bcc lattice (a) If both assertion and reason are true and reason with unit cell edge length 300 pm and molar mass 50 g is the correct explanation of assertion mol-1 will be (b) If both assertion and reason are true but reason (a) $10 \,\mathrm{g} \,\mathrm{cm}^{-3}$ (b) 14.2 g cm⁻³ is not the correct explanation of assertion. (c) If assertion is true but reason is false. (c) 6.15 g cm^{-3} (d) 9.32 g cm^{-3} (d) If both assertion and reason are false 15. Molar conductivity of NH₄OH can be calculated by the 8. In the following reactions sequence, equation $(A) + N_2 \xrightarrow{\Delta} (B) \xrightarrow{+H_2O} (C) + (D)$ (a) $\Lambda^0_{NH_4OH} = \Lambda^0_{Ba(OH)_2} + \Lambda^0_{NH_4Cl} - \Lambda^0_{BaCl_2}$ white ppt. (C) is formed and gas (D) is evolved. White (b) $\Lambda^{0}_{NH_{4}OH} = \Lambda^{0}_{BaCl_{2}} + \Lambda^{0}_{NH_{4}Cl} - \Lambda^{0}_{Ba(OH)_{2}}$ ppt. (C) dissolves in NaOH solution, while gas (D) gives (c) $\Lambda_{NH_4OH}^0 = \frac{\Lambda_{Ba(OH)_2}^0 + 2\Lambda_{NH_4Cl}^0 - \Lambda_{BaCl_2}^0}{2}$ white fumes in HCl. Thus. (A) is (a) B (b) A1 (c) Ga (d) C (d) None of these

	· · · · ·		
16.	The reaction $2NO + Br_2 \longrightarrow 2NOBr$, obeys the following mechanism:		(a)
	$NO + Br_2 \xrightarrow{Fast} NOBr_2; NOBr_2 + NO \xrightarrow{Slow} 2NOBr$		(c)
	as	25.	The
	(a) $r = k [NO]^2 [Br_2]$ (b) $r = k [NO] [Br_2]$		(Pla
	(c) $r = k [NO] [Br_2]^2$ (d) $r = k [NOBr_2]$		(a)
17.	Assertion: Nickel is purified by reacting it with CO. Reason: Impurities present form a volatile complex		(c)
	(a) If both assertion and reason are true and reason is the correct explanation of assertion	26.	Th (a)
	(b) If both assertion and reason are true but reason is not the correct explanation of assertion	07	(c)
	(c) If assertion is true but reason is false.	21.	II a
18	(d) If both assertion and reason are false Which of the following transition metal ions has		43
10.	highest magnetic moment?		rea
	(a) Cu^{2+} (b) Ni^{2+} (c) Co^{2+} (d) Fe^{2+}		H_2
19.	$[Co(NH_3)Cl(en)_2]^{2+}$ shows two geometrical isomers <i>cis</i>		(a) (c)
	and <i>trans</i> . Which of the following statements is correct?	28.	Th
	(a) trans-isomer will show optical isomerism (b) cis-isomer will show optical isomerism		A_{x}
	(c) Both <i>trans</i> and <i>cis</i> -isomers will show optical		(a)
	(d) Neither <i>cis</i> nor <i>trans</i> -isomer will show optical		(a)
20	isomerism		(c)
20.	chloride is called	29.	Th
	(a) Etard reaction (b) Riemer Tiemenn reaction		bas
	(c) Wurtz reaction		the (a)
21	(d) Cannizzaro's reaction The most basic amine among the following is:	20	(c)
21.	NH_2	30.	20
		ha	20 0n
			fav
	(a) (b) (c)		(a) (b)
			(c)
	NH_2 NH_2 I		(d)
	\land	31.	Th
			110§
			(u) (h
22	CH_3 F Which of the following is not a target molecule for drug		(D)
22.	function in body?		(U)
	(a) Carbohydrates (b) Lipids (c) Vitamins (d) Proteins	30	(a) For
23.	The presence or absence of hydroxy group on which	54.	Zn
	carbon atom of sugar differentiates RNA and DNA? (a) 1^{st} (b) 2^{nd}		tak
	(c) 3^{rd} (d) 4^{th}		
24.	Total volume of atoms present in a face-centred cubic unit cell of a metal is (r is atomic radius)		wil
1			(a)

	(a) $\frac{20}{3}\pi r^3$	(b)	$\frac{24}{3}\pi r^3$
	(c) $\frac{12}{2}\pi r^3$	(d)	$\frac{16}{2}\pi r^3$
25.	The de-Broglie wavelength	of a t	ও tennis ball of mass 60 g
	moving with a velocity of 1	0 m	/s is approximately
	(Planck's constant, $h = 6.6$	53×10	0 ⁻³⁴ Js)
	(a) 10^{-33} m	(b)	10^{-31} m
0.5	(c) 10^{-16} m	(d)	10^{-25} m
26.	The structure of IF_7 is (a) square pyramid	(b)	trigonal bipvramid
	(c) octahedral	(d)	pentagonal bipyramid
27.	If at 298 K, the bond end	ergie	s of $C-H$, $C-C$, $C=C$
	and $H - H$ bonds are resp	pectiv	vely 414, 347, 615 and
	435 kJ mol ⁻¹ , the value of reaction	of en	thalpy change for the
	$H_2C = CH_2(a) + H_2(a) \longrightarrow D$	H ₂ C -	$-CH_3(q)$ at 298 K will be
	(a) $+ 250 \text{ kJ}$	(b)	- 250 kJ
	(c) $+ 125 \text{ kJ}$	(d)	- 125 kJ
28.	The degree of dissociation AB is related to work Use	ι (α) fffaa	oi a weak electrolyte,
	$i_x D_y$ is related to varit Ho. i-1	11 Iac	i - 1
	(a) $\alpha = \frac{1}{(x+y-1)}$	(b)	$\alpha = \frac{1}{x + y + 1}$
	(c) $\alpha = \frac{x+y-1}{i-1}$	(d)	$\alpha = \frac{x + y + 1}{i - 1}$
29.	The pK_a of a weak acid, Ha	A is 4	.80. The pK_b of a weak
	base, B OH, is 4.78. The p	H of	an aqueous solution of
	(a) 9.58	, wii (b)	4.79
20	(c) 7.01	(d)	9.22
30.	$2SO_{a}(a) + O_{a}(a) = 2SO_{a}(a)$		$\Lambda H^0 = -198 \text{ k.I}$
Cha	On the basis of Le-Chateli	, er's	principle, the condition
	favourable for the forward	reac	tion is
	(b) increasing temperature	e as e as	well as pressure well as pressure
	(c) lowering the temper	atur	e and increasing the
	(d) any value of temperatu	ıre a	nd pressure
31.	The reduction potential of	f hyd	lrogen half-cell will be
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	=2.0	М
	(b) $p(H_2) = 1$ at n and $[H_1]$	_1.0	M
	(c) $p(H_2) = 1$ atm and $[H]$: (c) $p(H_2) = 2$ atm and $[H^+]$	=1.0	M
	(d) $p(H_{\circ}) = 2$ atm and $[H^+]$	=2.0	М
32.	For the redox reaction,		
	$Zn(s) + Cu^{2+}(0.1M) \longrightarrow Zn$	²⁺ (1 <i>M</i>	T) + Cu(s)
	taking place in a cell, E_{cell}^0	is 1	.10 V. E_{cell} for the cell
	will be $\left(2.303\frac{RT}{F} = 0.0591\right)$.)	
	(a) 2.14 V (c) 1.07 V	(b) (d)	1.80 V 0.82 V
		(u)	0.04 V

50. A particle of mass m is released from rest and follows a parabolic path as shown. Assuming that the displacement of the mass from the origin is small, which graph correctly depicts the position of the particle as a function of time?

- 51. A disc is rolling, the velocity of its centre of mass is v_{cm} . Which one will be correct?
 - (a) the velocity of highest point is 2 v_{cm} and point of contact is zero
 - (b) the velocity of highest point is v_{cm} and point of contact is v_{cm}
 - (c) the velocity of highest point is $2\,\upsilon_{\scriptscriptstyle cm}$ and point of contact is v_{cm}
 - (d) the velocity of highest point is $2\,\nu_{\rm cm}$ and point of contact is $2v_{cm}$.
- 52. A statellite A of mass m is at a distance of r from the surface of the earth. Another satellite B of mass 2m is at a distance of 2r from the earth's centre. Their time periods are in the ratio of
 - (b) 1:16 (a) 1:2
 - (d) $1: 2\sqrt{2}$ (c) 1:32
- 53. 10 gm of ice cubes at 0°C are released in a tumbler (water equivalent 55 g) at 40°C. Assuming that negligible heat is taken from the surroundings, the temperature of water in the number becomes nearly (L = 80 cal/g
 - (b) 22 °C (a) 31 °C
 - (c) 19°C (d) 15 °C
- 54. A thermodynamic system is taken from state A to Balong ACB and is brought back to A along BDA as shown in the PV diagram. The net work done during the complete cycle is given by the area

55. A mass m is suspended from the two coupled springs connected in series. The force constant for springs are k_1 and k_2 . The time period of the suspended mass will he

(a)
$$T = 2\pi \sqrt{\frac{m}{k_1 - k_2}}$$
 (b) $T = 2\pi \sqrt{\frac{mk_1k_2}{k_1 + k_2}}$
(c) $T = 2\pi \sqrt{\frac{m}{k_1 + k_2}}$ (d) $T = 2\pi \sqrt{\frac{m(k_1 + k_2)}{k_1k_2}}$

- 56. The equation of a simple harmonic wave is given by $y = 3\sin\frac{\pi}{2}(50t - x)$, where x and y are in metres and t is in seconds. The ratio of maximum particle velocity to the wave velocity is
 - (b) $\frac{3}{2}\pi$ (a) 2π (d) $\frac{2}{3}\pi$

(c) 3π

- 57. A wave of frequency 100 Hz travels along a string towards its fixed end. When this wave travels back, after reflection, a node is formed at a distance of 10 cm from the fixed end. The speed of the wave (incident and reflected) is
 - (a) 20 m/s (b) 40 m/s
 - (c) 5 m/s(d) 10 m/s.

58. If potential (in volts) in a region is expressed as V(x, y, z) = 6xy - y + 2yz, the electric field (in N/C) at point (1, 1, 0) is

(a)
$$-(2\hat{i}+3\hat{j}+\hat{k})$$
 (b) $-(6\hat{i}+9\hat{j}+\hat{k})$

(c) $-(3\hat{i}+5\hat{j}+3\hat{k})$ (d) $-(6\hat{i}+5\hat{j}+2\hat{k})$

59. A square surface of side L metres is in the plane of the paper. A uniform electric field \vec{E} (volt/m), also in the plane of the paper is limited only to the lower half of the square surface (see figure). The electric flux in SI units associated with the surface is

60. A potentiometer circuit is set up as shown. The potential gradient, across the potentiometer wire, is kvolt/cm and the ammeter, present in the circuit, reads 1.0 A when two way key is switched off. The balance points, when the key between the terminals (i) 1 and 2 (ii) 1 and 3, is plugged in, are found to be at lengths l_1 cm and l_2 cm respectively. The magnitudes, of the

64. An inductor 20 mH, a capacitor 50 μF and a resistor 40Ω are connected in series across a source of emf

$V=10\sin 340t.$	The	power	loss	in	A.C.	circuit	is	
------------------	-----	-------	------	----	------	---------	----	--

a)	0.76 W	(b)	0.89 W

(d) 0.67 W (c) 0.51 W 65. An electron moves on a straight line path XY as shown. The *abcd* is a coil adjacent to the path of electron. What will be the direction of current, if any, induced in the coil?

- (b) No current induced
- (c) abcd
- (d) adcb
- 66. The interference pattern is obtained with two coherent light sources of intensity ratio n. In the interference

pattern, the ratio $\frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$ will be

(a)
$$\frac{\sqrt{n}}{n+1}$$
 (b) $\frac{2\sqrt{n}}{n+1}$
(c) $\frac{\sqrt{n}}{(n+1)^2}$ (d) $\frac{2\sqrt{n}}{(n+1)^2}$

- 67. A beam of light of $\lambda = 600$ nm from a distant source falls on a single slit 1 mm wide and the resulting diffraction pattern is observed on a screen 2 m away. The distance between first dark fringes on either side of the central bright fringe is
 - (a) 1.2 cm (b) 1.2 mm
 - (c) 2.4 cm (d) 2.4 mm
- 68. Light of wavelength 500 nm is incident on a metal with work function 2.28 eV. The de Broglie wavelength of the emitted electron is

(a)
$$\geq 2.8 \times 10^{-9}$$
 m (b) $\leq 2.8 \times 10^{-12}$ m
(c) $< 2.8 \times 10^{-10}$ m (d) $< 2.8 \times 10^{-9}$ m

- 69. The transition from the state n=3 to n=1 in a hydrogen like atom results in ultraviolet radiation. Infrared radiation will be obtained in the transition from
 - (a) $2 \rightarrow 1$ (c) $4 \rightarrow 2$
- $\begin{array}{ll} \text{(b)} & 3 \rightarrow 2 \\ \text{(d)} & 4 \rightarrow 3 \end{array}$ 70. A npn transistor is connected in common emitter configuration in a given amplifier. A load resistance of 800Ω is connected in the collector circuit and the voltage drop across it is 0.8 V. If the current amplification factor is 0.96 and the input resistance of the circuit is 192Ω , the voltage gain and the power gain of the amplifier will respectively be (a) 4, 4
 - (b) 4, 3.69 (d) 3.69, 3.84
- (c) 4, 3.84 71. Transfer characteristics [output voltage (V₀) vs input voltage (V)] for a base biased transistor in CE configuration as shown in the figure. For using transistor as a switch, it is used

(a)
$$\frac{1}{2\pi}\sqrt{\frac{\rho gA\sin\left(\frac{\theta_1+\theta_2}{2}\right)}{m}}$$
 (b) $\frac{1}{2\pi}\sqrt{\frac{\rho gA(\sin\theta_1-\sin\theta_2)}{m}}$
(c) $\frac{1}{2\pi}\sqrt{\frac{\rho gA(\sin\theta_1+\sin\theta_2)}{m}}$ (d) $\frac{1}{2\pi}\sqrt{\frac{\rho gA\sin\left(\frac{\theta_1-\theta_2}{2}\right)}{m}}$

81. The time period of mass M when displaced from its equilibrium position and then released for the system as shown in figure is

82. An air chamber of volume V has a neck of crosssectional area a into which a light ball of mass m just fits and can move up and down without friction. The diameter of the ball is equal to that of the neck of the chamber. The ball is pressed down a little and released. If the bulk modulus of air is B, the time period of the oscillation of the ball is:

(a)
$$T = 2\pi \sqrt{\frac{Ba^2}{mV}}$$

(b) $T = 2\pi \sqrt{\frac{BV}{ma^2}}$
(c) $T = 2\pi \sqrt{\frac{mB}{Va^2}}$
(d) $T = 2\pi \sqrt{\frac{mV}{Ba^2}}$

83. A capacitor is made of two circular plates of radius R each, separated by a distance $d \ll R$. The capacitor is connected to a constant voltage. A thin conducting disc of radius $r \ll R$ and thickness $t \ll r$ is placed at the centre of the bottom plate. Find the minimum voltage required to lift the disc if the mass of the disc is m.

(a)
$$\frac{\sqrt{mgd}}{\pi\varepsilon_0 r^2}$$
 (b) $\sqrt{\frac{mgd}{\pi\varepsilon_0 r}}$
(c) $\sqrt{\frac{mgd^2}{\pi\varepsilon_0 r^2}}$ (d) $\sqrt{\frac{mgd}{\pi\varepsilon_0 r^2}}$

84. In the given circuit, initially K_1 is closed and K_2 is open. Then K_1 is opened and K_2 is closed. If q_1' and q_2' are charges on C_1 and C_2 and V_1 and V_2 are the voltage respectively, then

- (a) charge on C_1 gets redistributed such that $V_1 = V_2$ (b) charge on C_1 gets redistributed such that $q_1' = q_2'$ (c) charge on C_1 gets redistributed such that $C_1V_1 = C_2V_2 = C_1V$
- charge on C₁ gets redistributed such that $q_1' + q_2' =$ (d) 2q

85. A capacitor of $4\mu F$ is connected as shown in the circuit.

The internal resistance of the battery is 0.5Ω . The amount of charge on the capacitor plates will be

(a) 0

(c) $16\mu C$ 86. A 4A current carrying loop consists of three identical quarter circles of radius 5 cm lying in the positive quadrants of the x - y, y - z and z - x planes with their centres at the origin joined together, value of \vec{B} at the origin is

(a)
$$\frac{\mu_0}{10} (\hat{i} + \hat{j} - \hat{k}) T$$
 (b) $\frac{\mu_0}{10} (-\hat{i} + \hat{j} + \hat{k}) T$
(c) $\frac{\mu_0}{5} (\hat{i} + \hat{j} + \hat{k}) T$ (d) $10 \mu_0 (\hat{i} + \hat{j} + \hat{k}) T$

87. The correct plot of the magnitude of magnetic field \vec{B} vs distance r from centre of the wire is, if the radius of wire is R

As a result of change in the magnetic flux linked to 88. the closed loop shown in figure, an emf, V volt is induced in the loop. The work done (in joule) in taking a charge q coulomb once along the loop is

89. Which of the following graphs represents 'the correct variation of capacitive reactance X_c with frequency v?

-										()			
	nic	lase				~				(a)	carbohydr	ates a	are
	(d) Op	tic nerv	e, oculo	omote	or and	- Sens	sory nei	rves		(b)	volume of	f carb	on
	vag	gus									volume of	oxyge	en (
115.	Select	the corr	ect opt	ion y	with re	espect to	mitosi	s.		(c)	volume of	carb	on
	(a) Ch	romatide	e etart	mov	ing tor	vards or	nosite	noles		(-)	volume of	ovva	en (
			s start	mov		varus op	posite .	poies		(4)		f a a m1	511 V 1
		telopna	se				1	. • • •		(u)	volume o	i cari	001
	(b) Go	lgi comp	lex and	l end	oplasn	nc reticu	ilum are	e still			volume of	oxyge	en (
	vis	ible at t	he end	of p	rophas	se			124.	Wh	ich one of	the	foll
	(c) Ch	romosoi	mes mo	ove t	o the	spindle	equator	and		glye	colysis?		
	get	aligned	along	equa	atorial	plate in	metapl	nase		(a)	$G-6-P \rightarrow$	PEP ·	\rightarrow
	(d) Ch	romatid	s sena	rate	hut re	mains i	the c	entre		(b)	G-6-P →	3-PG	AT.
	(u) of	the cell	in ana	nhae	out 10		1 1110 0	011010		(c)	G-6-P →	PEP	
110	Nf - 4 - 1-	41 C-11.		1-1-1	C					(C) (A)	C 6 P	2 DC	Ń
110.	Match	the long	owing c	colum	ins. –	. .			105	(u) Tu 1	$0 - 0 - 1 \rightarrow 0$	3-1 GZ	л –
	Co	lumn I			C	olumn			125.	ina	uction of I	loweri	ing
	A. Le	ototene	1. T	ermi	nalisat	ion of c	hiasma			18			
	B. Zy	gotene	2. C	rossi	ng ove	er and re	combin	ation		(a)	vernalisat	ion	
	C. Pa	chvtene	3. S	vnar	osis					(c)	photoperie	odism	1
	D Di	akinesis	34 V	İsibil	lity of	chromos	somes		126.	Geo	otropic rest	oonse	is
	Codes		,	10101	iii, 01	011101110	,011100			(a)	mature ro	ots	
1	ν ν	D	C	р	^	П	C	D		(α)	root con	515	
1		D		ע ג	A	D			107	(U) The	bool cap	of f-	
1	(a) 1	2	3	4	(D) 1	3	2	4	127.	1116	DACK HOW	01 18	reca
1	(c) 4	3	2	1	(d) 4	1	2	3		18 I	prevented b	y the	pr
117.	When	the con	centra	tion	of the	soil sol	utes is	low,		(a)	epiglottis		
1	the ab	sorption	of wat	er			11.	00	na	(b)	sphincter	of Od	ldi
1	(a) rer	nains no	ormal		(b) is	stopped		111-	3	(c)	ileo-caeca	l valv	ve 🛛
1	(c) is	increase	ed		(d) is	decreas	sed			(d)	gastric-oe	sopha	age
118	Stomat	al openi	ina is a	fect	d bv	acciea			128	Wh	ich one of	the fo	110
110.	(a) mit	ar open			eu by	aanha	n die		120.	the	site of act	ion of	n + 1
	(a) III	rogen	. сопсо		ation,	carbo		oxide		the			11 U
	C01	icentrat	ion and	i ligh	it .	1 Da	/			act	ing upon it	and	the
	(b) cai	bon dic	oxide c	oncer	ntratio	n, temp	erature	and		(a)	Duodenun	n - Tr	igly
	lig	ıt				$ \Omega $					des	211	
	(c) nit	rogen co	oncentr	ation	ı, light	and ter	nperatu	ire		(1-)	0	<u> </u>	0.
	(d) ca	bon d	dioxid	e c	oncen	tration	nitr	ogen		(D)	Small inte	stine	- 51
	C01	centrat	ion and	1 ten	iperati	ire Z		0			(maltose)	5 11	
119	About	98% of	the m	288 0	of ever	v living	organis	m is		(c)	Small inte	stine	- P
11.	compo	sed of	inet ei	v ele	ment	y includ	ing car	hon		(0)	Sintan Inte	otine	-
	budnog	on nitro	just 51		and	5 meruu	ing car	5011,		(d)	Stomach -	· Fats	; —
	inyurog		gen, ox	ygen	and				129.	The	e volume of	'Anat	om
	(a) pn	ospnoru	s and a	suipn	lur		U/A			(a)	230 mL		
	(b) su	phur ar	id mag	nesiu	ım		NVV			(c)	190 mL		
	(c) ma	gnesiun	n and s	odiu	m		11	· A (130	Ma	tch the foll	owing	σ cc
	(d) cal	cium an	nd phos	phor	us				100.	ina	Column		5
120.	The m	acronuti	rient w	hich	is an	essentia	l compo	onent		٨	Dolumia	. 1	117
1	of all o	rganic o	compou	nds.	yet no	t obtain	ed by n	lants		л. Г	Polyuna	1.	vv .
1	from s	oil is	1.00		50		- J P			В.	pyuria	2.	Hi
1	(a) ni+	rogen			(h)	rhon				С.	Gout	3.	Еx
1	(a) m^{1}	anham			(d)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	m			D.	Haematur	ia 4.	Pr
101	(c) pn	JSPHOTU	15 Call		(u) m	agnesiù	111			Co	des		
121.	Consid	er the i	onowin	ig sta	itemer	1LS.	200 50	<u> </u>			A B	С	
1	I. Th	e portior	n of the	spec	trum l	oetween	300-50	0 nm		(a)	3 1	2	
1	is	also ref	erred t	o as	Photo	synthet	ically A	ctive		(α)	1 2	3	
	Ra	diation	(PAR).						121	(C) Th-	-1 -4	of in	
1	II. Ma	gnesiu	m, cal	cium	and	chlorid	e ions	plav	131.	1 file			
1	pro	minent	role in	the	photol	vsis of v	vater.	• -J		(a)	between 7	-8	
1	III In	cvelie *	hotop	10en1	r = 1000	ation or	woen is	s not		(c)	between 1	2-14	
1	111, 111 ma ¹	and in	a thore	io spi	101y lo	t_0	f woton	and	132.	RA	AS secretes	s whic	ch d
1	IEI	ascu (a		, 18 I	10 P110	101YS1S 0	i water)	anu		(a)	Mineraloc	orticc	oids
1		UPH 18	also no	ot pro	Jauced					(c)	Both (a) a	nd (b))
1	(a) I is	correct	; but I	1 and	i III ar	e incorre	ect		133	Ma	tch the foll	lowing	g co
1	(b) I a	nd II ar	e incor	rect;	but III	l is corre	ect				Column		5 00
1	(c) II i	s correc	t; but	I and	l III ar	e incorre	ect				(Function)		
1	(d) I a	nd III a	re corre	ect; t	out II i	s incorre	ect			٨	(Function)	+:	
122.	Which	of the f	ollowin	g is	maxim	um is c	hloropla	st?		A.	onraiiltra	uon	~
	(a) R11	BP carh	oxvlase	· ~· ن	(b) H	exokina	se			В.	Concentra	tion (of
1	(c) Dh	osnhata	5219 1430		(d) M		~~				urine		
102	When	rooning	torr	110+÷-	(u) (u)	1000 +1-	0 1 0	in c		С.	Transport	of ur	ine
123.	wnen	tespira	tory q		111 18	1088 lfl	an 1.0	ша		D.	Storage of	urine	e
1	respira	ισιγ me	LADOIIS	uu, 1t	mean	s mat					-		

((a)	carbohvdrates	are	used	as	respiratory	substrate
л							

- ne of carbon dioxide evolved is less than ne of oxygen consumed
- ne of carbon dioxide evolved is more than ne of oxygen consumed
- ne of carbon dioxide evolved is equal to ne of oxygen consumed
- ne of the following is correct sequence in s?
 - $P \rightarrow PEP \rightarrow 3\text{-}PGAL \rightarrow 3\text{-}PGA$
 - $P \rightarrow 3\text{-}PGAL \rightarrow 3\text{-}PGA \rightarrow PEP$
 - $P \rightarrow PEP \rightarrow 3-PGA \rightarrow 3-PGAL$
 - $P \rightarrow 3-PGA \rightarrow 3-PGAL \rightarrow PEP$
- of flowering by low temperature treatment
 - alisation (b) cryobiology
 - operiodism (d) prunning
- c response is perceived by
 - ire roots (b) elongating roots
 - cap (d) root hairs
- flow of faecal matter in the large intestine ted by the presence of
 - ottis
 - acter of Oddi
 - caecal valve
 - ic-oesophageal sphincter
- e of the following is the correct matching of of action on the given substrate, the enzyme on it and the end-product?
 - enum Triglycerides Trypsin → Monoglyceri
 - l intestine Starch $\xrightarrow{\alpha-\text{amylase}}$ Disaccharide ose)
 - l intestine Proteins $\xrightarrow{\text{Pepsin}}$ Amino acids
 - ach Fats $\xrightarrow{\text{Lipase}}$ Micelles
- ne of 'Anatomical Dead Space' air is normally (b) 210 mL nL
 - nL (d) 150 mL
- e following columns.
 - Column II
 - ıria 1. WBCs pus in urine 2. High level of uric acid in blood ิล 3. Excess of urine output naturia 4. Presence of blood (RBCs) in urine С B D А В С D 2 3 1 1 4 (b) 2 4 2 2 3 4 (d) 4 3 1
- of blood is een 7-8 (b) between 2-4 (d) between 2-5 een 12-14 cretes which of the following hormone?
- ralocorticoids (b) Glucocorticoids (d) None of these (a) and (b)
- e following columns. mn I Column II
 - ction) (Part of Excretory System) filtration 1. Henle's loop entration of Ureter 2.
 - Urinary bladder 3.
 - 4. Malpighian corpuscle

						5.	Prox	mal co	onvol	uted		II.	End	odern	n		Dei	rmis			
	-	_					tubu	le				III	. Mes	oderr	n		Mu	scles	1		
	Coo	des	П	0	Б		٨	П	0	D		IV.	Mes End	odern	n		Not	ochord	tooth		
	(a)	A	В 1		D 2	(h)	A	B		1		v. (a)	I II	Land	IV		(b)		IL and	V	
	(a)	4 5	1	2 1	ა ვ	(U) (A)	4 5	3 ⊿	∠ 1	1		(a)	I, II I an	d IV	1 V		(b) (b)	I, II, II I and	II and II	v	
134	(C) Wh	ich of	the fo	llowing	J	(u) the	small <i>i</i>	t et cra	ı 1 lein	4 herve?	142.	As	sisted	repro	oducti	ve tech	nolos	v. IVF	involve	es trar	nsfer
104.	(a)	Abdu	cent	110 w 111ş	5 13	(b)	Ontio		inai i			of	515000	. ropr	Jadoti			5,			
	(c)	Troch	lear			(d)	Facia	1				(a)	ovu	m inte	o the	Fallopi	ian tı	ıbe			
135.	Wh	ich is	not a	reflex	acti	on?						(b)	zygo	ote in	to the	Fallor	oian t	ube			
	(a)	Saliva	ation									(c)	Zyg	ote in	to the	uteru	IS				
	(b)	Eye o	pening	g and o	closi	ng						(d)	emt	oryo v	vith 1	6 bala	stom	iers int	the	Fallo	pian
	(c)	Respo	onse to	o pinch	ning	pin	in a f	rog leg			1.40	~	tub	• .			. •	c 1 ·			
	(d)	Sweat	ting								143.	So	me ge	enomi	c repr	esenta	tion	of skin	colour	are g	given
136.	Mu	scular	tetan	y can t	be ca	ause	d by d	leficien	icy of			De. T		h CC			ττ	AA bb	<u></u>		
	(a)	STH	xine			(D) (A)	Darat	byroid	horr	none		1. III	AA	BB CC	, ,		IV.	aa bb			
137	Wh	ich of	the fo	llowing	n hoi	rmor	para les an	nrodi	iced	in the		WI	nich	of th	e opt	ion is	cor	rect fo	or sho	wing	the
107.	hvn	othala	mus a	and sto	bred	in t	he po	sterior	pitui	itarv?		da	rknes	s of c	olour	of the	skin	in dec	reasin	g orde	er?
	(a)	FSH a	and LF	ł		(b)	ADH	and or	xytoc	in		(a)	III -	→ II	→ I -	→ IV	(b)	$I \rightarrow I^{V}$	$V \rightarrow I$	$\bar{I} \rightarrow I$	II
	(c)	TSH a	and S7	ΓH		(d)	ACTH	I and I	M SH			(c)	III -	→ I -	→ II -	→ IV	(d)	$I \rightarrow II$	$II \rightarrow I$	$I \rightarrow I$	V
138.	The	e embr	yo sad	c of an	igios	pern	ns cor	ntains			144.	А	gene	that	mask	s ano	ther	gene's	expre	essior	n, is
	(a)	3 celle	ed egg	appara	atus	, 3 a	ntipod	al cell a	and 2	2 polar	00	cal	lled								
	(1)	nucle	1			0		1 1	10	mu	iig	(a)	don	inan	t		(b)	recess	sive		
	(D)	2 celle	ea egg :	appara	atus	, 3 a	ntipod	ai ceii a	and 2	polar		(c)	epis	tatic			(d)	assort	ed		
	(c)	3 cell	ı ed eaa	annar	t110	2 27	tinod		nd 1	polar	145.	Se	lect t	he in	correc	t state	ment	from	the fo	llowin	g:
	(C)	nucle	i u ugg	, appai	tus,	2 ai	nipou		and 1	polai		(a)	Lin	kage	is an	exce	ptioi	n to the	ne pri	ncıpl	e of
	(d)	3 celle	ed egg	appara	atus	, 1 a	ntipod	al cell a	and 2	polar		(h)	Gal	ctose	ent as	sortiii s an ir	born	li licico	of met	aholis	m
	()	nucle	i				- / /	275				(0)	Sma	all no	nulati	on size	resi	ults in	rando	m ger	netic
139.	Mat	tch the	e follo	wing c	olur	nns.		Ω				(0)	drif	ina	popul	ation	100	arto m	ranao	501	10 110
	C	Colum	n I	Co	lum	n II		Col	umn	III		(d)	Balo	lness	isa	sex-lin	nited	trait			
	1.1	nterst	itial	a. Co	rtex	of o	vary	I. Fol	licula	ar	146.	Po	int m	utatio	on inv	olves					
	0 0	cells	00110	h Or	omio	n fal	liala	Ilui II Dro	d			(a)	inse	ertion	511						
	2. 0	Franul	Cells	D. UV	aria	11 101	ncie	II. PIO III Att	achm	ent		(b)	cha	nge ir	ı singl	e base	e pair				
	0.0	ells	034	C. 1C.	5115			of s	spern	1		(c)	dup	licatio	on						
	-							bur	ndle		147	(d)	dele	etion	7	C	41		1_1_	11	
	4. C	Cells o	f	d. Sei	mini	fero	us	IV. Tes	stoste	erone	147.	AC	couple	e, bou	1 carri	ers for	the g	$\frac{1}{2}$	kie-ce	n anae	
	С	orpus	luteu	m tuł	oule	s			~	: A C	<i>hal</i>	of	havin	σ and	emic	nrogen	wann	S LU KI	iow tii	e cha	lices
	(a)	2-a-II	I, 1-c-	-IV, 3-1	b-I,	4-d-	II					(a)	100	8 ana %	.emic .	progen	.y (b)	75%			
	(b)	1-c-IV	7, 2-d-	-III, 3-1	b-I,	4-a-	II					(α)	50%				(d)	25%			
	(C)	1-d-ll	I, 2-a- I 1 a	-1V, 3-	b-l,	4-C-					148.	Ma	tch t	he fo	lowing	g colui	nns				
140	(u) Wh	at does	a A B	and C	ren [.]	resei	nts in	the fol	lowin	g flow			Col	umn	I (Sci	entist	:)	Colum	n II (Conc	ept)
110.	cha	at uoe.	з п, р	and C	rep	10301	.105 111		10 10 111	s now		А.	Tay	or an	d Col	league	s 1.	lac ope	eron		
Sc	ome	cells –	→ Г		Г	B _		Ducata	~1~~~ d	1		В.	Her	shey	and C	hase	2.	DNA r	replica	tes se	emi
of	foet	us			∠Ľ	В		Prosta	giano	lins		~	a				•	consei	rvative	ly .	
				\mathbf{i}								C.	Gri	11th	1 1 1	1	3.	Transf	orming	g prin	ciple
				\sim	_							D.	Jac	od and	a Mon	οα	4.	DNA 1	s the	geneti	IC
				С]												5	Transo	rintio	n	
					_							Co	des				0.	manot	Jiiptio.		
				Portu	ritio	n							А	В	С	D		А	В	С	D
	(a)	A - Ox	ytocir	n B-Ute	erus	C-slo	ow cor	tractio	n of ı	ıterus		(a)	2	5	1	3	(b)	3	4	2	1
	(b)	A-Pro	gester	one B-	Oxy	rtocir	n C-sl	ow con	tract	ion of		(c)	2	4	3	1	(d)	1	5	4	2
		uteru	S			_					149.	Ch	oose	the co	orrect	statem	ent w	vith refe	erence	to org	anic
	(c)	A-Plac	centa	B-Oxy	tocir	1 C-	Vigoro	us con	tract	ion of		eve	olutio	n.	c 1 .			C 1		., .	.
	(لم)	uteru	S	ית ם-	or t		lice	110 5-	+	ion in		1.	Fip]	pers o	t what	le and	wing	of bat	exhibi	t ana	logy
	(a)	n-OXJ	riocin	D-Plac	enta	a U-V	vigoro	us con	uact	ion in		11. TTT	win Oro	g UID' ans	uuerii with	y and v dissim	ving (vilar	DI DI10 6	TITE O	nome	11ed
141	Ide	ntifv tł	ie cori	rectly n	nato	hed	pairs	of the g	verm	lavers		111	ana	00011	s orga	ns	iiial	SHUCL	urt d	it ta	neu
1.	and	their	deriv	atives.	·····	u	Puilo	51 CHC E		-4,010		IV	. Org	ans w	ith sin	nilar st	ructi	ire and	origin	are ca	alled
	Ι.	Ectod	erm			Epi	dermi	S				- • •									

	homologous organs		Kingdom	Kingdom	Kingdom	Kingdom
	(a) I and II (b) II and IV		↑	↑		
	(c) I and II (d) III and IV		Division	Division	Division	V Division
150.	Darwin proposed the theory of		Division	Division	Division	Division
	(a) inheritance of acquired characters		Ť	Ť	\downarrow	\checkmark
	(b) natural selection		Class	Order	Order	Class
	(c) recapitulation		\uparrow	↑	\downarrow	\downarrow
	(d) continuity of germplasm		Order	Class	Class	Order
151.	Match the following columns.		*	*	1	
	Column I ColumnsII				. ↓ 	↓
	A. Neurosis 1. Maladaptive habit		Family	Family	Family	Family
	B. Hypochondria 2. Undue concern about health		\uparrow	\uparrow	\downarrow	\downarrow
	C. Insomnia 3. Lack of sleep		Species	Genus	Genus	Genus
	D. Phobia 4. Intense fear		- ↑	↑		
	Codes		Genus	Species	v Species	Species
	A B C D A B C D	160	New eveter	Species	Species	Species
	(a) 2 1 4 3 (b) 2 1 3 4	100.	New system		ouuceu by	Sil Julian Huxley Is
	(c) 4 1 3 2 (d) 1 2 3 4		(a) Phene	tics	(b) c	ladiation
152.	A person showing unperdictable moods, outbursts of		(a) litence (a) biosystem	temotics	(d) t	numerical taxonomy
	emotions, quarrelsome behaviour and conflicts with	161	(c) blosys	ountains	u) i difficulty ir	breathing is due to
	others is suffering from	101.	(a) decrea	se in narti	al pressure	of ovvgen
	(a) schizophrenia		(b) decrea	se in amou	int of oxyg	en
	(b) Borderline Personality Disorder (BPD)	na	(c) increas	se in carbo	n diovide	concentration
	(c) mood disorders		(d) All of t	he above	iii uloxiuc	concentration
	(d) addictive disorders	162	Axis vertel	ne above pra is ident	tified by	
153.	Ergotamine tartarate extracted from <i>Claviceps</i> , is used	102.	(a) sigmoi	d notch	(b) c	leltoid ridge
	for cure of		(c) odonto	id process	(b) (b)	rentrum
	(a) bodyache (b) headache	163.	The sensat	ion of fatig	ue in the m	uscles after prolonged
1-4	(c) fever (d) severe stomach pain	100.	strenous p	hysical wo	rk. is caus	ed by
154.	The pioneer country in the production of fuel-alconol		(a) a decre	ease in the	supply of	oxvgen
	18 (a) Caudi Archia (b) Iran and Iran		(b) minor	wear and t	ear of mus	scle fibres
	(a) Saudi Arabia (b) Iran and Iraq		(c) the de	pletion of	glucose	
155	(C) Brazil (C) Japan The protoin products of the following Dt towin general		(d) the ac	cumulation	of lactic a	acid
155.	The protein products of the following Bi toxin genes	164.	Malignant	malaria is	caused by	
	(a) bellworm (b) roundworm		(a) Plasmo	odium falci	parum	
	(a) bollwollin (b) foundwollin (c) moth (d) fruit fly		(b) Plasmo	odium oval	e	
156	A technology which has found immense use in solving		(c) Plasmo	odium viva	x	
150.	cases of disputed parentage is	hal	(d) Plasmo	odium mal	ariae	
	(a) polymerase chain reaction	165.	The metho	d, which y	ields the b	est pictorial form and
	(a) polymerase chain reaction (b) DNA fingerprinting		does not e	expose the	patient to	potentially harmful
	(c) monoclonal antibody production		ionising ra	diations is	8	
	(d) recombinant DNA technology		(a) X-ray 1	radiography	y	
157.	The change in population size at a given time interval		(b) angiog	raphy		
			(c) compu	ted tomogr	aphy	
	$I_{t} \text{ is given by the expression, } N_{t} = N_{0} + B + I - D - E I_{t}$		(d) magne	tic resonar	nce imagin	g
	B and D stands respectively for	166.	Lindeman	for the firs	t time gave	e energy transfer law,
	(a) rate of immigration, mortality rate, natality rate		which stat	es that		
1	(b) rate of immigration, natality rate, rate of		(a) only 2	0% of the	energy is	transferred to each
	emigration		trophic	e level		
	(c) mortality rate, natality rate, rate of immigration		(b) only I	0% of the	energy is	transferred to each
150	(a) rate of immigration, natality rate, mortality rate		trophic	e level		
1 ^{158.}	which one of the following is not observed in		(c) only 3	U% of the	energy is	transferred to each
1	biodiversity not spots?		trophic	e level		
	(a) Euclism		(d) only 5	U% of the	energy is	transferred to each
	(b) Accelerated species loss	107	trophic	c ievel		
1	(d) Species richness	107.	which one		wing is one	e of the characteristics
150	(u) openes numers Which one of the following shows the hierershies!		(a) Stratif	ical commu	uuuy <i>r</i> (ג) א	Jotolity
1.22.	arrangement of taxonomic categories of plants in		(a) SITALI	itation	1 (U) 2 (K)	valally Sev. ratio
1	descending order?	168	Given bel	ily www.ie.the.	(u) t renresento	tion of the extent of
1	(a) (b) (c) (d)	100.	golbal dive	reity of inw	ertebrates	What groups the four
			Solvar uive		cricorates.	what groups the loui

