

CHEMICA POINT

CHEMICAL BONDING

	<u> </u>			
Ir	structor: ER. S.K.SINGH (B. Tech,	M.T	ech) M.N.N.I.T. All	d.
Mul	tiple Choice Questions		(a) one sigma, one pi	(b) one sigma, two pi
1.	It is believed that atoms combine with each other		(c) two sigma, one pi	(d) two sigma, two pi
	such that outermost shell acquires stable configuration of 8 electrons. If stability were attained			
	with 6 electrons rather than 8, what would be the	11	How many bonds are the	ere in ()
	formula of the stable fluoride ion?	11.	now many bonds are the	ite iii 🕠
	(a) F^{-} (b) F^{+}		(a) 14σ , 8π	(b) $18\sigma, 8\pi$
	(c) F^{2+} (d) F^{3+}			
2.	In which of the following compounds does the central		(c) $19\sigma, 4\pi$	(d) $14\sigma, 2\pi$
	atom obey the octet rule?	12.	In $[Ag(CN)_2]^-$, the number	of π bonds is
	(a) XeF_4 (b) $XeOF_2$		(a) 2	(b) 3
	(c) SCl ₂ (d) AlCl ₃	12	(c) 4 Which of the following an	(d) 6 ecies contains equal numbe
3.	Based on lattice energy and other considerations,	15.	of σ and π – bonds?	celes contains equal numbe
	which one of the following alkali metal chlorides is		(a) (CN) ₂	(b) CH ₂ (CN) ₂
	expected to have the highest melting point? (a) LiCl (b) NaCl			. , 2, ,2
	(c) KCl (d) RbCl		(c) HCO_3^-	(d) XeO ₄
4.	Which of the following species contains three bond	14.		th is the shortest in which
	pairs and one lone pair around the central atom?		one of the following bond	
	(a) H_2O (b) BF_3		(a) C – O	(b) C – C
	(c) NH_2^- (d) PCl_3	1 -	(c) $C \equiv N$	(d) O-H
5. In which of the following, the central atom has two		15.		ativity of atoms A and B are The % ionic character of the
	lone pairs of electrons?		A - B bond is	The 70 forme character of the
	(a) SF ₄ (b) BrF ₅ (c) SO ₂ (d) XeF ₄		(a) 50%	(b) 72.24%
6.	The number of lone pairs of electrons on the central		(c) 55.3%	(d) 43%
	atoms of H ₂ O, SnCl ₂ , PCl ₃ and XeF ₂ respectively are	16.	For AB bond if percent ion	nic character is ploted agains
	(a) 2, 1, 1, 3 (b) 2, 2, 1, 3		electronegativity difference	te $(X_A - X_B)$, the shape of the
-	(c) 3, 1, 1, 2 (d) 2, 1, 2, 3		curve would look like	
7.	Which of the following has a regular geometry? (a) CHCl ₃ (b) PCl ₃			D
	(a) $CIICI_3$ (b) ICI_3 (c) XeF_6 (d) SF_4		₽ L100	C C
8.	Predict the correct order of repulsions among the		100 A	
	following:		ğ l	1 ^D
	(a) bond pair-bond pair > lone pair-bond pair > lone		Percent jonic character	<u> </u>
	pair - lone pair (b) lone pair - bond pair > lone		cent	
	pair - lone pair			2 3
	(c) lone pair - bond pair > lone pair - bond pair > bond		(X _A —X _B	
	pair - bond pair			
	(d) lone pair - lone pair > bond pair - bond pair > lone		(a) (A)	(b) (B)

pair - bond pair

- in the order (a) H-H > F-F > H-F(b) H - F > F - F > H - H
- (c) H F > H H > F F
 - (d) F F > H F > H H

10. The number and type of bonds between two carbon atoms in calcium carbide are

(d) (D) The strength of the covalent bond in H₂, F₂ and HF is 17. Arrange the following compounds in order of increasing dipole moment

> Toluene (I), m-dichlorobenzene (II), o-dichlorobenzene (III), p-dichlorobenzene (IV)

- (a) I < IV < II < III (b) IV < I < II < III
- (c) IV < I < III < II
- (d) IV < II < I < III

ADDRESS:- 2/2B Kasturba Gandhi Marg Near Mayohall Kutchery Road Prayagraj

	(c) CO_3^{2-} , SO_3^{2-}	(d) ClO ₃ -,CO ₃ ²⁻		(a) 33 and 25 (c) 67 and 75	(b) 50 and 75 (d) 33 and 75
32.	The type of hybrid orbitals used by chlorine atom in		45.	The d -orbital involved in	
	ClO_3^- is			molecule is:	-
	(a) sp^3	(b) sp^2		(a) $3d_{x^2-y^2}$	(b) $3d_{z^2}$
	(c) sp	(d) none of these		(c) 3dxy	(d) $4d_{x^2-v^2}$
33.		ving compounds has sp ²	46.	In which one of the followi	ng species the central atom
	hybridisation? (a) CO ₂	(b) SO ₂			tion which is not the same
	(c) N_2O	(d) CO		as that present in the oth	
34.		nic orbitals of nitrogen in		(a) PCl ₅	(b) SF ₄
	NO_2^+ , NO_3^- and NH_4^+ are			(c) I_3^-	(d) $SbCl_5^{2-}$
	(a) sp, sp ³ and sp ² respect		47.	Some of the properties of	the two species, NO ₃ and
	(b) sp, sp ² and sp ³ respect			H ₂ O ⁺ are described belo	w. Which one of them is
	(c) sp ² , sp and sp ³ respect (d) sp ² , sp ³ and sp ³ respec			correct?	
35.		disation of the central atom			ion for the central atom with
		H_3 , $[PtCl_4]^{2-}$, PCl_5 and BCl_3		different structures	1 1 11 11 11 6 11
	is:	(b) an^3 dan^2 dan^3 and an^2		central atom	me hybridization for the
36.	(a) dsp ² , dsp ³ , sp ² and sp ³ (b) sp ³ , dsp ² , dsp ³ and sp ² (c) dsp ² , sp ² , sp ³ , dsp ³ (d) dsp ² , sp ³ , sp ² , dsp ³ The charge of SE and VeF represtively are				erent hybridization for the
	The shapes of SF ₄ and XeF ₂ respectively are (a) trigonal bipyramidal and trigonal bipyramidal				nfor the central atom with
	(b) see-saw and linear		40	different structures	
	(c) T-shape and linear(d) square planar and trigo	onal hinyramidal	48.	Which one of the following conversions involve change in both hybridisation and shape?	
37.	The pair having similar ge	ometry is			(b) $NH_3 \rightarrow NH_4^+$
	(a) PCl ₃ , NH ₄	(b) BeCl ₂ , H ₂ O		(c) $BF_3 \rightarrow BF_4^-$	(d) $H_2O \rightarrow H_3O^+$
38.	(c) CH ₄ , CCl ₄	(d) IF ₅ , PF ₅ F 90 ^o angles between bond	49.	Which of the two ions from	m the list given below that
	pair-bond pair of electrons			have the geometry that	is explained by the same
	(a) dsp³ hybridisation			hybridization of orbitals,	$NO_{2}^{-}, NO_{3}^{-}, NH_{2}^{-}, NH_{4}^{+}, SCN^{-}$?
39.	(c) dsp ² hybridisation (d) sp ³ d ² hybridisation Which of the following contains maximum number of lone pairs on the central atom?			(a) NO_2^- and NH_2^-	(b) NO_2^- and NO_3^-
٥٥.				(c) NH_4^+ and NO_3^-	(d) SCN- and NH ₂
	(a) ClO ₃	(b) XeF ₄	50.	The correct sequence of d	_
	-	•	00.	of the following hydrides is	
40	(c) SF_4 (d) I_3^-			(a) $NH_3 > PH_3 > AsH_3 > SbH_3$	
40.	Consider the following molecules or ions:			(b) NH ₃ > AsH ₃ > PH ₃ > Sb. (c) SbH ₃ > AsH ₃ > PH ₃ > N	
	(i) CH_2Cl_2	(ii) NH ₄ ⁺		(d) $PH_3 > NH_3 > AsH_3 > Sb$	
	(iii) SO ₄ ²⁻	(iv) C1O ₄	51.		– bond of ethene is located
	(v) NH ₃ sp ³ hybridisation is involved in the formation of			in	
	(a) (i), (ii), (v) only	(b) (i), (ii) only		(a) the molecular plane(b) a plane parallel to the	molecular plane
	(c) (ii) only	(d) (i), (ii), (iii), (iv) and (v)			o the molecular plane which
41.	The hybridization of oxyge				oon σ – bond at right angle
	(a) sp^3d	(b) sp			o the molecular plane which
42.	(c) sp ² SF SF and SF have th	(d) sp ³	E 0	contain the carbon-carl	
	SF ₂ , SF ₄ and SF ₆ have the hybridisation at sulphur atom respectively as		34.	Shape of O_2F_2 is similar to (a) C_2F_2	(b) H ₂ O ₂
	(a) sp^2 , sp^3 , sp^3d^2	(b) sp^3 , sp^3 , sp^3d^2		(c) H_2F_2	(d) C_2H_2
42	(c) sp^3 , sp^3d , sp^3d^2	(d) sp ³ , spd ² , d ² sp ³	53.		
43.	The bond angle and % of c (a) 120°, 20%	(b) 90° , 33%		(a) NO_3^-	(b) NO_2^-
	(c) 109°, 25%	(d) 90°, 25%		(c) NO ₂	(d) NO ₂ ⁺
44.		acter of the hybrid orbitals	54	$In I_3^-$, Lewis base is	-
	in graphite and diamond a	are respectively	JT.	11113, Lewis Dast 18	

	(a) I_2	(b) I ₂	67.	The species in which the hybridisation is:	N atom is in a state of sp
	(c) I_2^+	(d) I-		(a) NO ₂ ⁺	(b) NO ₂
55.		molecules are all the bonds		(c) NO ₃	(d) NO ₂
56.	not equal? (a) AlF ₃ (c) ClF ₃ Which of the following sp	(b) NF ₃ (d) BF ₃ ecies has a linear shape?	68.	Consider the molecules C the given statements is f	H_4 , NH_3 and H_2O . Which of
	(a) NO ₂ ⁺	(b) O ₃		- N - H bond angle in l	NH ₃
	(c) NO ₂	(d) SO ₂		(b) The H - C - H bond ang H - N - H bond angle i	gle in $\mathrm{CH}_{\scriptscriptstyle 4}$ is larger than the
57.	=	ous KI, the intense yellow		(c) The H - C - H bond a	ngle in $\mathrm{CH_4}$, the H - N - H
	species, I_3^- , is formed. The				$H - O - H$ bond angle in H_2O
58.	(a) Square pyramidal(c) OctahedralIn which pair of species,	(b) Trigonal bipyramidal (d) Pentagonal bipyramid both species have similar	69.	C - H bond angle in CF Which one of the following	gle in H ₂ O is larger than H -
	geometry? (a) CO_2 , SO_2	(b) NH ₃ ,BH ₃		and coordinate bonds? (a) NaOH (c) NaCN	(b) NaCl (d) NaNC
	(c) CO_3^{2-} , SO_3^{2-}	(d) SO ₄ ²⁻ ad ClO ₄ ⁻	70	Which has $p_{\pi} - d_{\pi}$ bonding	` '
59.	The incorrectly matched p Molecule	pair among the following is: Shape	70.	(a) NO_3^-	(b) SO ₃ ²⁻
	(a) BrF ₅	Trigonal bipyramidal		(c) BO_3^{3-}	(d) CO_3^{2-}
	(b) SF ₄ (c) CiF ₃	See saw T-shape	71.	The corect stability order	of the following resonance
	(d) NH ₄ ⁺	Tetrahedral		structures is	
	(e) NH ₃	Trigonal pyrasidal		$(I) H2C = N - N^-$	$(II) H_2 \overset{+}{C} = N - N^-$
60.	Two types of FXF angles	are present in which of the		(III) $H_2\bar{C} - N = N$	(IV) $H_2\bar{C} - N = N$
	following molecule? (a) SF ₄	(b) XeF		(a) $I > II > IV > III$	(b) I > III > IV
	(c) SF ₆	(b) XeF ₄ (d) CF ₄	72.	(c) II > I > III > IV Which of the following stru	(d) III > I > IV > II actures is the most preferred
61.	Out of N_2O , SO_2 , I_3^+ , I_3^- , H_2	O , NO_2^- and N_3^- , the linear		and hence of lowest energ	
	species are			:O:	
	(a) NO_2^-, I_3^+, H_2O	(b) N_2O, I_3^+, N_3^-		(-)	(L) S
	(c) N_2O, I_3^-, N_3^-	(d) N^{3-}, I_3^+, SO_2		(a) S	(p) :O: :Ö:
62.	Which of the following sp	ecies is non-linear?			
	(a) ICl_2^-	(b) I ₃		:0: 	:O:
	(c) N_3^-	(d) ClO ₂		II S	
63.	The species having pyram (a) SO ₃	- · · ·		(c) :Q: 'Ö: :Ö:	(d) :Ö. Ş. Ö:
	(c) SiO_3^{2-}	(d) OSF_2	73.	Consider the statements	:
64.	The correct order of increfollowing species is:	easing bond angles in the		I. Bond length in N_2^+ is 0.002 Å greater than in N_2^- II. Bond length in NO^+ is 0.09 Å less than in NO^-	
	(a) $ClO_2^- < Cl_2O < ClO_2$	(b) $Cl_2O < ClO_2 < ClO_2^-$		III. O_2^{2-} has shorter bond	length than O ₂
	(c) $ClO_2 < Cl_2O < ClO_2^-$	(d) $Cl_2O < ClO_2^- < ClO_2$		Which of the following sta	
65.	Among the molecules SO which of the following shat these molecules?	, SF ₄ , ClF ₃ , BrF ₅ and XeF ₄ pe does not describe any of	74.	(a) I and II (c) I, II and III The correct order of incre	(b) II and III (d) I and III asing C - O bond length of
	(a) Bent	(b) Trigonal bipyramidal		CO, CO_3^{2-} , CO_2 is	-
66.	(c) See-saw XeF ₂ is isostructural with	(d) T-shape		(a) $CO_3^{2-} < CO_2 < CO$	
	(a) TeF ₂	(b) ICl ₂		(c) $CO < CO_3^{2-} < CO_2$	(d) $CO < CO_2 < CO_3^{2-}$
	(c) SbCl ₃	(d) BaCl ₂	75.	In which of the following	g ionization processes, the

	has changed?			(b) Bond order three and (b) Bond order three and (b)	
	(a) $N_2 \longrightarrow N_2^+$	(b) $C_2 \longrightarrow C_2^+$		(c) Bond order two and π –	- acceptor
	(c) $NO \longrightarrow NO^+$		87	(d) Isoelectronic and weak Which is correct stater.	_
76.	• •	order different from that in	07.	molecular orbitals? States (1) π – bonding orbitals ar	ments are:
	(a) NO ⁻	(p) NO ₊		(2) π – antibonding orbital	· ·
		(d) N_2		(3) σ – antibonding orbital	s are gerade
77.	(c) CN ⁻	d order values among the		(a) 1 only	(b) 2 and 3 only
	following:	d order values among the	88.	(c) 3 only Assuming the Hund's rule	(d) 2 only is violated, the bond order
	A. NO	B. NO ⁺		and magnetic nature of di	
	C. NO	D. NO ²⁺		(a) 1 and diamagnetic(c) 1 and paramagnetic	(b) 0 and diamagnetic (d) 0 and paramagnetic
	E. NO ²⁻ is		89.	Peroxide ion	
- 0	(a) A < D < C < B < E (c) E < A < D = C < B			orbitals	led antibonding molecular
78.	which one of the follow paramagnetic species?	ing pairs consists of only		(ii) is diamagnetic (iii) has bond order one	
	(a) [O ₂ , NO]	(b) $[O_2^+, O_2^{2-}]$		(iv) is isoelectronic with r Which of these are correct	
	(c) [CO, NO]	(d) [NO,NO ⁺]		(a) (iii) and (iv)	(b) (i), (ii) and (iv)
79.	•	KO ₂ at room temperature is	90.	(c) (ii) and (iii) The pairs of species ox	
	(a) 1.41	(b) 1.73 (d) 2.64		behaviours are noted belopresents the correct desc	ow. Which of the following ription?
30.	(c) 2.23 Which of the following opt	tions represents the correct		(a) O_2^-, O_2^{2-} - Both diamagr	netic
	bond order?			(b) O^+, O_2^{2-} - Both paramage	
	(a) $O_2^- > O_2 < O_2^+$	(b) $O_2^- < O_2 > O_2^+$			
	(c) $O_2^- > O_2^- > O_2^+$	(d) $O_2^- < O_2 < O_2^+$		(c) O_2^+, O_2^- - Both paramagn	
31. Decreasing order of stability of O_2, O_2^-, O_2^+ and $O_2^{2^-}$ is		91.	(d) $O_1O_2^{2-}$ - Both paramage Which of the following is O_2^{2-}	netic correct with respect to bond	
	(a) $O_2^{2-} > O_2^- > O_2 > O_2^+$	(b) $O_2 > O_2^+ > O_2^{2-} > O_2^-$	J1.	length of the species?	
	(c) $O_2^- > O_2^{2-} > O_2^+ > O_2$	(d) $O_2^+ > O_2^- > O_2^- > O_2^{2-}$		(a) $C_2 > C_2^{2-}$	(b) $B_2^+ > B_2$
32.	Four diatomic species are listed below in different sequences. Which of these presents the correct order of their increasing bond order?		92.	(c) $Li_2^+ > Li_2$	(d) $O_2 > O_2^-$
				ionization potential?	
	(a) $O_2^- < NO < C_2^{2-} < He_2^+$	(b) $NO < C_2^{2-} < O_2^- < He_2^+$		(a) O	(b) O ₂
	(c) $C_2^{2-} < He_2^+ < NO < O_2^-$	(d) $He_2^+ < O_2^- < NO < C_2^{2-}$	0.0	(c) O_2^+	(d) O_2^-
33.	Which one of the following pairs of species have the same bond order?		93.	Arrange the following ions X - O bond length where	X is the central atom
	(a) O_2^- and CN^-	(b) NO^+, CN^+		(a) $ClO_4^-, SO_4^{2-}, PO_4^{3-}, SiO_4^{4-}$	(b) $SiO_4^{4-}, PO_4^{3-}, SO_4^{2-}, ClO_4^{-}$
	(c) CN^- and NO^+	(d) CN^- and CN^+		(c) SiO_4^{4-} , PO_4^{3-} , ClO_4^{-} , SO_4^{2-}	
34.			94.	The correct order in which	O - O bond length increases
	(a) O_2^{2-} , B_2	(b) O_2^+, NO^+		in the following is: (a) $O_3 < H_2O_2 < O_2$	(b) $O_2 < O_3 < H_2O_2$
	(c) NO, CO	(d) N_2, O_2		(c) $O_2 < H_2 O_2 < O_3$	(d) $H_2O_2 < O_2 < O_3$
35.	In the change of NO ⁺ to NO, the electron is added to		95.	In which of the following p the species are not likely	airs of molecules/ions, both
	the (a) σ orbital	(b) π orbital		(a) H_2^-, H_2^{2+}	(b) H_2^+, He_2^{2-}
	(c) σ^* orbital	(d) π * orbital		(c) H_2^-, He_2^{2-}	(d) H_2^{2+}, He_2
36.	The common features amo	ng the species CN-,CO and	96.	Stability of the species Li	
	NO⁺ are			the order of:	r 4 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3

	(a) $Li_2^- < Li_2 < Li_2^+$	(b) $Li_2 < Li_2^+ < Li_2^-$		is present in	
				(a) NO_2^+ and BaO_2^-	(b) KO_2 and AlO_2^-
0.7	(c) $Li_2^- < Li_2^+ < Li_2$	(d) $Li_2 < Li_2^- < Li_2^+$		(c) KO ₂ only	(d) BaO ₂ only
97.	Which of the following is		108.	Hybridisation of Al	in AlCl ₃ (monomeric form above
	(a) CO	(b) O_2^-			$_{6}$ (dimeric form below 400 $^{\circ}$ C
	(c) <i>CN</i> -	(d) <i>NO</i> ⁺		respectively are	2 2
98.	Assuming $2s-2p$ mix	ing is not operative, the		(a) sp^2 , sp^3	(b) sp^2 , sp^2
	paramagnetic species am			(c) sp^{3} , sp^{3}	(d) sp^2, dsp^2
	(a) Be ₂	(b) B ₂	109.	Which one of the fo	ollowing statements about carbor
	(c) C ₂	(d) N_2		monoxide is correct	t?
99.		hydrogen bonds that a water			pairs of electrons on oxygen aton
	molecule can form is (a) 1	(b) 2		(b) Carbon atom in	
	(c) 3	(d) 4		the metal atom	l carbonyls, oxygen is attached to
100.		hydrogen halide is most		(d) It has large valu	e of dipole moment
	volatile?		110.	In which of the foll	owing molecule would you expec
	(a) HF	(b) HCl (d) HI			ogen bond to be longest?
101	(c) HBr	nded water molecule(s) are		(a) N ₂ O	(b) N ₂ O ₄
101.	associated with CuSO ₄ .53		111	(c) N ₂ H ₄ The bond dissociati	(d) N_2 on energy of $B-F$ in BF_3 is 646
	(a) 1	(b) 2	111.		
100	(c) 3	(d) 4			at of $C - F$ in CF_4 is 515 kJ mol ⁻¹
102.	and <i>m</i> -Nitrophenols beca	ss soluble in water than p-			For higher $B-F$ bond dissociation
		ophenol is lower than those			I to that of $C - F$ is B-atom as compared to that of C
	of m -and p -isomers	•		atom	s-atom as compared to that of C
		e volatile in steam than m -			nd between B and F in BF_3 as
	and p-isomers	ntramalagular H. handing			t between C and F in CF ₄
		ntramolecular H - bonding Inermolecular H-bonding.		(c) significant $p\pi$ –	$p\pi$ interaction between B and I
103.	The hydrogen bond is shortest in				there is no possibility of such
	(a) S — H · · · · · S	(p) N — HO			een C and F in CF ₄
104	(c) S — HO				$p\pi - p\pi$ interaction between B and
104.	Which of the following statement is correct? (a) Melting point and boiling point of HI are greater		112		at between C and F in CF ₄ llowing statements about water is
	than those of HF	mig point of the are greater		false?	nater in
		greater than that of HF but			d to oxygen during photosynthesis
	melting point of HI is greater than that of HF				oth as an acid and as a base
	melting point of HI is	greater than that of HF but		in the condense	e intramolecular hydrogen bonding d. phase
		ing point of HI are less than			eavy water sinks in normal water
	that of HF		113.	Among the following	g, which one is wrong statement?
105.		oints of hydrogen halides is		(a) PH_5 and $BiCl_5$ do	o not exist
	in the order HF > HI > H higher boiling point of hy	Br > HCl. What explains the		(b) $p\pi - d\pi$ bonds a	-
		ogen bonding between HF		(c) SeF ₄ and CH ₄ ha	
	molecules			(d) I_3^+ has bent geo	metry
		F molecules is greater than	114.		ring statements are not correct?
	in other hydrogen hal	ides hielding is much reduced in			an ionic compound, is a good
	fluorine which polaris			conductor of ele (b) In canonical stru	actures there is a difference in the
	(d) The electronegativity of fluorine is much higher than			arrangement of	
105	for other elements in				orm stronger bonds than p-orbitals
106.		ring compounds shows the			annot explain the square plana
	presence of intramolecula (a) H ₂ O ₂	(b) HCN	115	geometry of XeF Paramagnetic speci	
	(c) Cellulose	\ / -	110.		
	(d) Concentrated acetic a	cid		(a) O_2^+	(b) O_2^-
107.	Among $\mathrm{KO}_{\scriptscriptstyle 2},\ \mathit{AlO}_{\scriptscriptstyle 2}^{\scriptscriptstyle -}$, $\mathrm{BaO}_{\scriptscriptstyle 2}$	and NO_2^+ , unpaired electron		(c) N_2^+	(d) N_2^-

116.	Which of the following sta	tements about CO_3^{2-} ion are	(a) CO_3^{2-} , NO_3^-	(b) ClO_3^-, CO_3^{2-}
	correct?		(c) SO_3^{2-}, NO_3^{-}	(d) ClO_3^-, SO_3^{2-}
	(a) The $C-O$ bond order:	is 1.33		Passage/Comprehension
	(b) The formal charge on	each oxygen atom is 0.67	Comprehension-1	r assage/ comprehension
	units			noment of a molecule is useful to
	(c) It has two $C-O$ sing	gle bonds and one $C = O$		a molecule and also to predict a
	double bond	_		erties of the molecule. The net dipole
	(d) The hybridization of ce	ntral atom is an ³		nic molecule is the resultant of the
1 1 17				ents present in the molecule. The
117.	Dipole moment is possess	sed by (one or more)	values are generally ex	pressed in Debye or in the S.I. units
	(a) 1, 4-Dichlorobenzene	•	in terms of Coulomb r	meter (C m)
	(b) <i>cis</i> 1, 2-Dichloroethene (c) <i>rans</i> -1, 2-Dichloroethe		127. 1 Debye is equiv	
	(d) trans-2, 3-Dichloro-2-p		(a) 3.33×10^{-30} Cm	
118		ecies have the same shape	(-) -	(d) 3.33×10^{-12} Cm
110.	and same bond order?	celes have the same shape		following will have maximum dipole
		(::) NT-	moment?	(1.) NO1
	(i) CO ₂	(ii) N_3^-	(a) NF ₃	(b) NCl ₃
	(iii) O ₃	(d) NO_2^-	(c) NBr ₃	(d) NH_3 ule, $X - Y$, is found to have a dipole
	(a) (i) and (ii)	(b) (iii) and (iv)		10^{-29} C m and a bond length of 150pm.
	(c) (i) and (iii)	(d) (ii) and (iv)		c character of the bond will be:
119.	CO ₂ is isostructural with	(4) (11) 4114 (11)	(a) 50%	(b) 62.5%
	(a) HgCl ₂	(b) SnCl ₂	(c) 75%	(d) 90%
	(c) C ₂ H ₂	(d) NO ₂	Comprehension-2	(1)
120.	The linear structure is as			e formed by the overlap of atomic
	(a) SnCl ₂	(b) <i>NCO</i> -		bitals combine to form two molecular
	2		orbitals, called Bondin	ig Molecular Orbial (BMO) and Anti-
	(c) NO_2^+	(d) CS_2	_	oital (ABMO). Different atomic orbitals
121.		molecule(s) is(are) expected		with those atomic orbitals of the
	to exhibit diamagnetic be			ave comparable energies and proper
	(a) S ₂	(b) C ₂		if the overlapping is head on, the
122	(c) N ₂	(d) O ₂		called 'sigma' and if the overlap is orbital is called 'pi'. The molecular
122.	The correct statement(s) about O_3 is(are): (a) $O - O$ bond lengths are equal			electrons following the same rules
	(b) Thermal decomposition of O_3 is endothermic			f atomic orbitals. However, the order
				ame for all molecules or their ions.
	(c) O ₃ is diamagnetic in nature			the most important parameter to
123	(d) O_3 has a bent structure . Hydrogen bonding plays a central role in the following		compare a number of	their characteristics.
	phenomena:			e following statements is correct?
	(a) Ice floats in water		• •	ed by the same amount of energy by
	(b) Higher Lewis basicity of primary amines than		which ABMO	
	tertiary amines in aqu	eous solution		ed by greater amount of energy than
	(c) Formic acid is more ac			y which ABMO is raised. ed by less amount of energy than the
	(d) Dimerisation of acetic			nich AbMO is raised.
124.		o lone pairs of electrons on	_	e above is possible.
	the central atom is(are)			following has maximum number of
	(a) BrF ₅	(b) ClF ₃	nodal planes?	5
125	(c) XeF ₄ According to molecular or	(d) SF ₄	(a) σ^*_{1s}	(b) $\sigma^*_{2p_z}$
120.	(a) C_2^{2-} is expected to be	-		
	_		(c) π_{2p_x}	(d) $\pi^*_{2p_y}$
	(b) $O_2^{2^+}$ is expected to have a longer bond length than O_2			as bond order equal to 1. The order of
1			their stability is	(1) II . I' .
	(c) N_2^+ and N_2^- have the s	ame bond order	(a) $H_2 = Li_2 = B_2$	(b) $H_2 > Li_2 > B_2$
	(d) He_2^+ has the same energy	gy as two isolated He atoms		(d) $B_2 > Li_2 > H_2$
126.	Which of the following pand isostructural?	airs of ions is isoelectronic	133. In which of the orbitals are gerad	following pair, both the molecular le or ungerade?

(a) σ_{2s} , π_{2p_x}

option (a), (b), (c), (d) given at the end of each question. (c) σ^*_{2s} , π_{2p_s} (d) π_{2p_x} , π_{2p_x} 138. Column I Column II Comprehension-3 (Molecule/ion) (Shape) Molecular orbitals are formed by the overlap of atomic (A) SnCl₂ (p) Linear orbitals. Two atomic orbitals combine to form two molecular orbitals called bonding molecular orbital (BMO) and (B) CO₃² (q) V-shape (bent) antibonding molecular orbital (ABMO). Energy of (C) HgCl₂ (r) Trigonal pyramidal antibonding orbital is raised above the parent atomic (D) H₂O+ (s) Triangular planar orbitals that have combined and the energy of the bonding (b) A-s, B-r, C-p, D-q (a) A-p, B-q, C-s, D-r orbital is lowered than the parent atomic orbitals. Energies (d) A-r, B-s, C-p, D-q (c) A-q, B-s, C-p, D-r of various molecular orbitals for elements hydrogento Column I Column II 139 nitrogen increase in the order: (Ion) (Shape) $\sigma 1s < \sigma * 1s < \sigma 2s < \sigma * 2s < (\pi 2p_x \approx \pi 2p_u) < \sigma 2p_z < (\pi * 2p_x)$ (A) IC1₂ (p) V - shape $\approx \pi * 2p_u < \sigma * 2p_z$ (B) NH₂ (q) Linear and for oxygen and fluorine, order of energy of molecular orbitals is given below: (C) NH_4^+ (r) Tetrahedral $\sigma 1s < \sigma * 1s < \sigma 2s < \sigma * 2s < \sigma 2p_z < (\pi 2p_x \approx \pi 2p_u)$ (D) [PtCl₄]²⁻ (s) Square planar $<(\pi * 2p_x \approx \pi 2p_y) < \sigma * 2p_z$ (a) A-r, B-s, C-q, D-p (b) A-q, B-p, C-r, D-s (c) A-p, B-q, C-r, D-s (d) A-s, B-p, C-q, D-r Different atomic orbitals of one atom combine with those Column I Column II atomic orbitals of the second atom which have comparable energies and proper orientation. Further, if the overlapping (A) sp^2 (p) IC1₄ is head on, the molecular orbital is called 'sigma', (σ) and (B) dsp^2 (q) TeCl₄ If the overlap is lateral, the molecular orbital is called 'pi', $(C) sp^3 d$ (r) SnCl₂ (s) $[Ni(\tilde{CN})_{A}]^{2-}$ (π) . The molecular orbitals are filled with electrons (D) sp^3d^2 (b) A-r, B-p, C-q, D-s (a) A-r, B-s, C-q, D-p according to the same rules as followed for filling of atomic (c) A-p, B-r, c-q, D-s (d) A-q, B-s, C-r, D-p orbitals. However, the order for filling is not the same for 141. Column I Column II all molecules or their ions. Bond order is one of the most (Molecule/Ion) (Bond order) important parameters to compare the strength of bonds. (A) NO (p) 1.5 134. Which of the following statements is correct? (B) CO (q) 2 (a) In the formation of dioxygen from oxygen atoms, (C)BN (r) 2.5 10 molecular orbitals will be formed. (b) All the molecular orbitals in the dioxygen will be (D) CN-(s)3completely filled. (a) A-r, B-s, C-q, D-p (b) A-s, B-s, C-p, D-q (c) Total number of bonding molecular orbitals will not (c) A-r, B-r, C-p, D-s (d) A-r, B-s, C-q, D-s be same as total number of antibonding orbitals 142. Match List I and List II and pick out correct in dioxygen. matiching codes from the given choices (d) Number of filled bonding orbitals will be same as List I List II number of filled antibonding orbitals. (Compound) (Structure) 135. Which of the following molecular orbitals has (A) ClF₃ (p) square planar maximum number of nodal planes? (B) PC1₅ (q) tetrahedral (C) IF₅ (r) trigonal bipyramidal (a) $\sigma * 1s$ (b) $\sigma * 2p_z$ (D)CC1, (s) square pyramidal (d) $\pi * 2p_{u}$ (c) $\pi 2p_x$ (E)XeF₄ (t) T-shaped (a) A-t, B-s, C-r, D-q, E-p (b) A-t, B-r, C-s, D-q, E-p 136. Which of the following pair is expected to have the same bond order? (c) A-s, B-r, C-t, D-q, E-p (d) A-r, B-s, C-p, D-t, E-q 143. Match the compounds in the List I with that in (b) O_2^+, N_2^- (a) O_2 , N_2 List II (d) O_2^-, N_2^- List I List II (c) O_2^-, N_2^+ (p) Planar triangular (A) XeO. 137. In which of the following molecules, $\sigma,2p_z$ molecular (B) XeOF (q) T-shape orbital is filled after $\pi 2p_x$ and $\pi 2p_y$ molecular (C) BO₂³⁻ (r) Trigonal pyramid orbitals? (D) ClF₃ (s) Square pyramid (b) Ne₂ (d) F₂ (a) O_2 (c) N₂ (E) I_3^- (aq) (t) Linear Matching Type Questions

Match the entries of column I with appropriate entries of

column II and choose the correct option out of the four

(u) Bent

(a) A-p, B-s, C-r, D-q, E-t (b) A-q, B-s, C-p, D-r, E-u

(c) A-r, B-s, C-p, D-q, E-u (d) A-r, B-s, C-p, D-q, E-t

144. Match List I (Molecules) with List-II (Boiling points) and select the correct answer List I (A)NH, (p) 200 K (p) 210 K (p) 240 K	/Symmetry) (A) σ_{2s} (p) 0	TYPE I Directions: Each questions given below contains	
List I (A) NH, (p) 290 K (D) ShH, (c) 290 K (E) BiH, (c) 1940 K (E) BiH, (c) 240 K (E) BiH, (e) A-p, B-q, C-t, D-s, E-p (b) A-t, B-r, C-q, D-s, E-p (c) A-p, B-s, C-l, D-q, E-r (d) A-p, B-q, C-r, D-s, E-p (c) A-p, B-s, C-l, D-q, E-r (d) A-p, B-q, C-r, D-s, E-p (c) A-p, B-s, C-l, D-q, E-r (d) A-p, B-q, C-r, D-s, E-p (c) A-p, B-s, C-l, D-q, E-r (d) A-p, B-q, C-r, D-s, E-p (c) A-p, B-s, C-l, D-q, E-r (d) A-p, B-q, C-r, D-s, E-p (c) A-p, B-s, C-l, D-q, E-r (d) A-p, B-q, C-r, D-s, E-p (c) A-p, B-s, C-l, D-q, E-r (d) A-p, B-q, C-r, D-s, E-p (c) A-p, B-s, C-l, D-q, E-r (d) A-p, B-q, C-r, D-s, E-p (c) A-p, B-s, C-l, D-q, E-r (d) A-p, B-q, C-r, D-s, E-p (c) A-p, B-s, C-l, D-q, E-r (d) A-p, B-q, C-r, D-s, E-p (c) A-p, B-s, C-l, D-q, E-r (d) A-p, B-q, C-r, D-s, E-p (c) A-p, B-s, C-l, D-q, E-r (d) A-p, B-q, C-r, D-s, E-p (c) A-p, B-s, C-l, D-q, E-r (d) A-p, B-q, C-r, D-s, E-p (c) A-p, B-s, C-l, D-q, E-r (d) A-p, B-q, C-r, D-s, E-p (c) A-p, B-q, C-r, D-q, E-p (c) A-p, B-q, C-r, B-q, D-s, H-q, B-q, C-r, B-q, B-p, H-q, B-q, C-r, B-q, B-p, H-q, B-q, C-r, B-p (c) A-p, B-q, B-r, B-r, B-r, B-r, B-r, B-r, B-r, B-r			
Dist List List I List I Column I Column I Column I Column Column I Column Column I Column		d-orbital(s) is (Atomic number: S = 16, Cl = 37, I = 53	
List I (A)NH, (B)PH, (C)A3H, (P) 186 K (E) BiH, (a)A-p, B-q, C-t, D-s, E-p (c)A-p, B-s, C-t, D-q, E-r (d)A-p, B-q, C-t, D-s, E-p (c)A-p, B-s, C-t, D-q, E-r (d)A-p, B-q, C-t, D-s, E-p (c)A-p, B-s, C-t, D-q, E-r (d)A-p, B-q, C-t, D-s, E-p (c)A-p, B-s, C-t, D-q, E-r (d)A-p, B-q, C-t, D-s, E-p (d)A-p, B-q, C-t, D-s, E			
List I (A) NH, (p) 290 K (C) AsH, (r) 186 K (E) BiH, (s) 264 K (E)	$(B) \operatorname{SnCl}_2$ $(q) \operatorname{Covalent}$		
List I (A) NH, (B) PH, (B) 290 K (C) Asl I, (P) 280 K (B) SH, (C) Asl I, (P) 186 K (D) SbH, (S) 264 K (E) BiH, (C) As, B-p, C-t, D-s, E-p (c) A-p, B-s, C-t, D-q, E-r (d) A-p, B-q, C-r, D-s, E-p (c) A-p, B-s, C-t, D-q, E-r (d) A-p, B-q, C-r, D-s, E-t (d) A-p, B-q, C-r, D-s, B-r, B-r, B-r, B-r, B-r, B-r, B-r, B-r			
List I (A) NH ₄ (p) 290 K (B) PH ₃ (q) 211 K (C) AsH ₃ (r) 186 K (D) SSH ₃ (s) 264 K (a) A-p, B-q, C-t, D-s, E-p (b) A-t, B-r, C-q, D-s, E-p (c) A-p, B-s, C-t, D-q, E-r (d) A-p, B-q, C-r, D-s, E-t l45. Match the orbital overlap figures shown in List-II with the description gives in List-II and select the correct answer using the code given belwo the lists: List I List II List II		- 9	
List I (A) NH, (B) PH, (C) AsH, (D) Paramagnetic (Q) Underoges oxidation (D) O ₂ (S) Bond order ≥ 2 (I) Mixing of s and p- orbitals Integer Type Questions Directions: The answer to each of the A B C D orbitals Integer Type Questions Directions: The answer to each of the A B C D orbitals Integer Type Questions Directions: The answer to each of the A B C D orbitals Integer Type Questions Directions: The answer to each of the A B C D orbitals Integer Type Questions Directions: The answer to each of the A B C D orbitals Integer Type Questions Directions: The answer to each of the A B C D orbitals Integer Type Questions Directions: The answer to each of the A B C D orbitals Integer Type Questions Directions: The answer to each of the A B C D orbitals Integer Type Questions Directions: The answer to each of the A B C D orbitals Integer Type Questions Directions: The answer to each of the A B C D orbitals Integer Type Questions Directions: The answer to each of the A B C D orbitals Integer Type Questions Directions: The answer to each of the A B C D orbitals Integer Type Questions Directions: The answer to each of the A B C D orbitals Integer Type Questions Directions: The answer to each of the A B C D orbitals Integer Type Questions Directions: The answer to each of the A B C D orbitals Integer Type Questions Directions: The answer to each of the A B C D orbitals Integer Type Questions Directions: The answer to each of the A B C D orbitals Integer Type Questions Directions: The answer to each of the A B C D orbitals Integer Type Questions Directions: The answer to each of the A B C D orbitals Integer Type Questions Integer			
List I	D (P) (Q) (T) (S)		
List I (A) NH, (p) 290 K (c) Ash 1/3 (r) 186 K (D) SbH 3/4 (g) 211 K (e) BiH 4/5 (g) A-p, B-q, C-t, D-s, E-p (c) A-p, B-s, C-t, D-q, E-r (d) A-p, B-q, C-r, D-s, E-t 145. Match the orbital overlap figures shown in List-II with the description gives in List-II and select the correct answer using the code given below the lists: List I List II List II List II List II List II List II A - d σ antibonding Code: P Q R S P Q R S A D Q R S P Q R S (a) 2 1 3 4 (b) 4 3 2 2 1 (c) 2 2 1 3 4 (d) 4 1 3 2 2 Matrix-Match Type Questions Match the entries of column I with appropriate entries of column II. Bach entry in column I may have one or more han one correct otipion from column II. If the correct matches are A-p, s; B-r; C-p, q; D-s, then the correct matches are A-p, s;	C D Q T S	Defining shape on the basis of the location of X and	
List I (A) NH (B) PH (C) (AshT (C) (B) EH (C) (C) (D) (D) (D) (D) (D) (D) (D) (D) (D) (D			
List I (A) NH ₃ (p) 290 K (β) PH ₃ (q) 211 K (β) PH ₃ (s) 264 K (E) BiH ₃ (t) 240 K (a) A-p, B-q, C-t, D-s, E-p (b) A-t, B-r, C-q, D-s, E-p (c) A-p, B-s, C-t, D-q, E-r (d) A-p, B-q, C-r, D-s, E-t with the description gives in List-II and select the correct answer using the code given below the lists: List I List II List II		XeF_4 , SF_4 , SiF_4 , BF_4^- , BrF_4^- , $[Cu(NH_3)_4]^{2+}$, $[FeCl_4]^{2-}$,	
List I (A) MH ₃ (p) 290 K (B) PH ₃ (q) 211 K (C) (C) SaH ₃ (r) 186 K (D) SbH ₃ (s) 264 K (E) BiH ₃ (t) 240 K (a) A-p, B-q, C-t, D-s, E-p (b) A-t, B-r, C-q, D-s, E-p (c) A-p, B-q, C-t, D-q, E-r (d) A-p, B-q, C-r, D-s, E-t lass. Mith the orbital overlap figures shown in List-II and select the correct answer using the code given below the lists: List I List II List II List II P - dπ antibonding D - dπ antibo			
List I (A) MH ₃ (B) 290 K (B) PH ₃ (C) (AsH ₄ (F) 186 K (D) SbH ₄ (B) BH ₃ (B) A-p, B-q, C-t, D-s, E-p (b) A-t, B-r, C-q, D-s, E-p (c) A-p, B-s, C-t, D-q, E-r (d) A-p, B-q, C-r, D-s, E-t (d) A-p, B-q, C-t, D-q, E-r (d) A-p, B-q, C-r, D-s, E-r (d) A-p, B-q, C-r, D-s, E-r (d) A-p, B-q, C-t, D-q, E-r (d) A-p, B-q, C-r, D-s, E-r (d) A-p, B-q, C-t, D-q, E-r (d) A-p, B-q, C-t, D-s, E-p (c) A-p, B-q, C-t, D-q, E-r (d) A-p, B-q, C-t, D-s, E-r (d) A-p, B-q, C-t, D-q, E-r (d) A-p, B-q, C-t, D-s, E-r (d) A-p, B-q, C-t, D-q, E-r (d) A-p, B-q, C-t, D-q, E-r (d) A-p, B-q, C-t, D-s, E-r (d) A-p, B-q, C-t, D-q, E-r (d) A-p, B-q, C-t, D-s, E-r (d) A-p, B-q, C-r, D-s, E-r (d) A-p, B-q, C-t, D-q, E-r (d) A-p, B-q, C-r, D-s, E-r (d) A-q, B-q, C-q, C-r, D-q, E-r (d) A-q, B-q, C-q, C-q, B-q, C-q, C-q, B-q, C-q, C-q, B-q, C-q, C-q, B-q, C-q, C-q			
List I (A) NH ₃ (p) 290 K (B) FH ₄ (q) 211 K (C) AsH ₄ (r) 186 K (D) SbH ₃ (s) 264 K (E) BiH ₃ (t) 240 K (E) BiH ₃ (t) 240 K (E) Ash, be a circle and containing the code given below the lists: Code: P Q R S P Q R S A A D A A D A A D A A			
points) and select the correct answer List I (A) NH $_3$ (p) 290 K (B) PH $_3$ (q) 211 K (C) AsH $_3$ (r) 186 K (D) SbH $_3$ (s) 264 K (E) BiH $_3$ (t) 240 K (a) A-p, B-q, C-t, D-s, E-p (c) A-p, B-s, C-t, D-q, E-r (d) A-p, B-q, C-r, D-s, E-p (c) A-p, B-s, C-t, D-q, E-r (d) A-p, B-q, C-r, D-s, E-t with the description gives in List-II and select the correct answer using the code given below the lists: List I			
points) and select the correct answer List I (A) NH ₃ (p) 290 K (B) PH ₃ (q) 211 K (C) AsH ₄ (r) 186 K (D) SbH ₃ (s) 264 K (E) BiH ₃ (t) 240 K (E) BiH ₃ (t) 240 K (E) Asp. B-q, C-t, D-s, E-p (c) A-p, B-s, C-t, D-q, E-r (d) A-p, B-q, C-r, D-s, E-t (d) A-p, B-q, C-t, D-q, E-r (d) A-p, B-q, C-r, D-s, E-t the correct answer using the code given below the lists: List I List II List II			
List I (A) NH ₃ (p) 290 K (B) PH ₃ (q) 211 K (C) AsH ₃ (r) 186 K (E) BiH ₃ (s) 264 K (E) BiH ₃ (t) 240 K (c) A-p, B-q, C-t, D-s, E-p (b) A-t, B-r, C-q, D-s, E-p (c) A-p, B-s, C-t, D-q, E-r (d) A-p, B-q, C-r, D-s, E-t with the description gives in List-II and select the correct answer using the code given belwo the lists: List I List II P.		156. Number of H_2O molecules attached to each H_2O	
points) and select the correct answer List I (A) NH ₃ (p) 290 K (B) PH ₃ (q) 211 K (C) AsH ₃ (r) 186 K (D) SbH ₃ (s) 264 K (E) BiH ₃ (t) 240 K (a) A-p, B-q, C-t, D-s, E-p (b) A-t, B-r, C-q, D-s, E-p (c) A-p, B-s, C-t, D-q, E-r (d) A-p, B-q, C-r, D-s, E-t 145. Match the orbital overlap figures shown in List-II and select the correct answer using the code given below the lists: List I List II			
Doints and select the correct answer List I List II (A) NH ₃ (B) PH ₃ (Q 211 K (C) AsH ₃ (D) SSH ₃ (S) 264 K (D) SSH ₃ (S) 264 K (D) Paramagnetic (P) Paramag	, ,		
Doints and select the correct answer List I List II Li			
points) and select the correct answer List I (A) NH ₃ (B) PH ₃ (Q) 211 K (C) AsH ₃ (D) SbH ₄ (S) EB BiH ₃ (a) A-p, B-q, C-t, D-s, E-p (c) A-p, B-s, C-t, D-q, E-r (d) A-p, B-q, C-r, D-s, E-t 145. Match the orbital overlap figures shown in List-I with the description gives in List-II and select the correct answer using the code given below the lists: List I List II P. List I List II P. $d = d = a$ antibonding A = $d = d = a$ bonding B = $d = a$ bonding B = $d = a$ antibonding B = $d = a$ bonding B = $d = a$ bonding B = $d = a$ antibonding B = $d = a$ bonding B = $d = a$ bonding Column I (A) B ₂ (P) Paramagnetic (Column II) (A) B ₃ (P) Paramagnetic (D) Underoges oxidation (D) Subder os Paramagnetic (D) Underoges oxidation (D) D ₂ (S) Bond order ≥ 2 (I) Mixing of s and porbitals Integer Type Questions Directions: The answer to each of the following questions is a single digit integer, ranging from 0 to 9. If the correct 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
List I (A) NH (B) PH (C) AsH (C) AsH (B) RH (C) AsH (B) RH (C) AsH	Code		
points) and select the correct answer List I (A) NH ₃ (p) 290 K (B) PH ₃ (q) 211 K (C) AsH ₄ (r) 186 K (D) SbH ₃ (s) 264 K (E) BiH ₃ (a) A-p, B-q, C-t, D-s, E-p (c) A-p, B-s, C-t, D-q, E-r (d) A-p, B-q, C-r, D-s, E-r (d) A-p, B-q, C-t, D-q, E-r (d) A-p, B-q, C-r, D-s, E-t with the description gives in List-II and select the correct answer using the code given belwo the lists: List I List II P. 1. $p - d \pi$ antibonding R. 3. $p - d \pi$ bonding Total number of lone pairs and bond pairs of electrons present around xenon in XeF ₄ is 152. Total number of molecular orbitals (9) (9) (9) (9) (9) (9) (9) (9) (9) (9)	7. 1. 10 - a o antiboliding		
points) and select the correct answer List I (A) NH ₃ (p) 290 K (B) PH ₃ (q) 211 K (C) AsH ₃ (r) 186 K (D) SbH ₃ (s) 264 K (E) BiH ₃ (t) 240 K (a) A-p, B-q, C-t, D-s, E-p (b) A-t, B-r, C-q, D-s, E-p (c) A-p, B-s, C-t, D-q, E-r (d) A-p, B-q, C-r, D-s, E-t 145. Match the orbital overlap figures shown in List-I with the description gives in List-II and select the correct answer using the code given belwo the lists: List I List II P. 1. $p - d \pi$ antibonding R. 3. $p - d \pi$ bonding A π bonding Column II (Take Z-axis as the internuclear axis) (A) B ₂ (p) Paramagnetic (B) N ₂ (q) Underoges oxidation (B) P-Q (D) Paramagnetic (C) O ₂ (r) Undergoes reduction (D) O ₂ (s) Bond order \geq 2 (t) Mixing of s and p -orbitals Integer Type Questions Directions: The answer to each of the following questions is a single digit on the question numbers A, B, C Q and D (say) are 4, 0, 9 and 2 respectively, then the correct darkening of bubbles (B) N ₂ (q) Underoges oxidation (D) O ₂ (s) Bond order \geq 2 (t) Mixing of s and p -orbitals Integer Type Questions Directions: The answer to each of the following questions is a single digit on the properties of the correct of arkening of bubbles (D) O ₂ (s) Bond order \geq 2 (t) Mixing of s and p -orbitals Integer Type Questions Directions: The answer to each of the following questions is a single digit on the properties (D) O ₂ (s) Bond order \geq 2 (D	S. 4 d - d a antibonding		
points) and select the correct answer List I List II (A) NH 3 (p) 290 K (g) 291 K (C) AsH 3 (r) 186 K (D) SbH 3 (s) 264 K (E) BiH 3 (a) A-p, B-q, C-t, D-s, E-p (c) A-p, B-s, C-t, D-q, E-r (d) A-p, B-q, C-r, D-s, E-t (t) Mixing of s and p -orbitals with the description gives in List-II and select the correct answer using the code given belwo the lists: List I List II List II List II P - d π antibonding D - d π bonding D - d π		150 Total mumban of malagular arbitals at a	
points) and select the correct answer List I (A) NH ₃ (p) 290 K (B) PH ₃ (q) 211 K (C) AsH ₃ (r) 186 K (D) SbH ₃ (s) 264 K (E) BiH ₃ (t) 240 K (a) A-p, B-q, C-t, D-s, E-p (b) A-t, B-r, C-q, D-s, E-p (c) A-p, B-s, C-t, D-q, E-r (d) A-p, B-q, C-r, D-s, E-t the correct answer using the code given belwo the lists: List I List II P. List I List II Q. Q	()(A) () () () () () ()	xenon in XeF_4 is 8888	
points) and select the correct answer List I List II (A) NH 3 (p) 290 K (p) 291 K (p) 290 K (p) 211 K (p) 290 K (p) 211 K (p) 240 K (p)	$ R_{\perp} $ $ S_{\perp} $ $ S_$	pairs of electrons present around	
points) and select the correct answer List I (A) NH ₃ (p) 290 K (B) PH ₃ (q) 211 K (C) AsH ₃ (r) 186 K (D) SbH ₃ (s) 264 K (E) BiH ₃ (a) A-p, B-q, C-t, D-s, E-p (b) A-t, B-r, C-q, D-s, E-t (c) A-p, B-s, C-t, D-q, E-r (d) A-p, B-q, C-r, D-s, E-t with the orbital overlap figures shown in List-II with the description gives in List-II and select the correct answer using the code given belwo the lists: List I List II P. List I List II List II P. List I List II List II P. List I List II List II List II P. List I List II List II List II D. List I List II L		151 70 4 1 1 61 3 1 1 1 6 6 6 6	
List I (A) NH ₃ (p) 290 K (B) PH ₃ (q) 211 K (C) AsH ₃ (D)SbH ₃ (s) 264 K (E) BiH ₃ (a) A-p, B-q, C-t, D-s, E-p (b) A-t, B-r, C-q, D-s, E-p (c) A-p, B-s, C-t, D-q, E-r (d) A-p, B-q, C-r, D-s, E-t 145. Match the orbital overlap figures shown in List-I with the description gives in List-II and select the correct answer using the code given belwo the lists: List I List II P. List I List II P. A π antibonding Calumn I (Take Z-axis as the internuclear axis) (A) B ₂ (B) N ₂ (p) Paramagnetic (B) N ₂ (p) Underoges oxidation (P) Undergoes reduction (P) O ₂ (p) Underoges oxidation (P) O ₃ (p) Underoges oxidation (P) O ₄ (p) O ₄ (p) O ₄ (p) Paramagnetic (P) O ₄ (p) Underoges oxidation (P) O ₄ (p) O ₄ (p) O ₄ (p) O	\(\frac{\cup \cup \}{\cup \} \) \(\frac{\cup \}{\cup \		
points) and select the correct answer List I (A) NH ₃ (p) 290 K (B) PH ₃ (q) 211 K (C) AsH ₃ (r) 186 K (D)SbH ₃ (s) 264 K (E) BiH ₃ (t) 240 K (a) A-p, B-q, C-t, D-s, E-p (b) A-t, B-r, C-q, D-s, E-p (c) A-p, B-s, C-t, D-q, E-r (d) A-p, B-q, C-r, D-s, E-t 145. Match the orbital overlap figures shown in List-I with the description gives in List-II and select the correct answer using the code given belwo the lists: List I List II P. List I List II P. $p - d \pi$ antibonding (Cake Z-axis as the internuclear axis) (Take Z-axis as the internuclear axis) (Take Z-axis as the internuclear axis) (A) B ₂ (p) Paramagnetic (B) N ₂ (q) Underoges oxidation (C) O ₂ (r) Undergoes reduction (D) O ₂ (s) Bond order ≥ 2 (t) Mixing of s and p-orbitals Integer Type Questions Directions: The answer to each of the following questions is a single digit integer, ranging from 0 to 9. If the correct 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\frac{1}{2} d - d \sigma$ bonding		
points) and select the correct answer List I (A) NH ₃ (B) PH ₃ (C) AsH ₃ (C) AsH ₃ (D) SbH ₃ (E) BiH ₃ (E) BiH ₃ (E) A-p, B-q, C-t, D-s, E-p (c) A-p, B-s, C-t, D-q, E-r (d) A-p, B-q, C-r, D-s, E-t 145. Match the orbital overlap figures shown in List-I with the description gives in List-II and select the correct answer using the code given belwo the lists: List I List II P. List II P. List II D - d π antibonding (C) AsH ₃ (C) AsH ₃ (R) P2 (Column I (A) B ₂ (P) Paramagnetic (P) Underoges oxidation (P) Paramagnetic (P) O ₂ (P) O ₂ (P) Paramagnetic (P) Underoges oxidation (P) O ₂ (P) O ₂ (P) O ₂ (S) Bond order \geq 2 (P) Mixing of s and probitals (P) Mixing of s and probitals (P) O ₂ (S) Bond order \geq 2 (P) Mixing of s and probitals (P) O ₂ (E) BiH ₃ (C) AsH ₂ (P) Paramagnetic (P) O ₂ (P) Underoges oxidation (P) O ₂ (S) Bond order \geq 2 (P) Mixing of s and probitals (P) O ₃ (P) O ₄ (P) O ₄ (P) O ₅ (P) O ₆ (P) O ₇ (P) Underoges oxidation (P) O ₇ (P) O ₈ (P) O ₈ (P) Paramagnetic (P) O ₈ (P) O ₈ (P) Paramagnetic (P) O ₈ (P) O		113. In The office of the decimal of market to the office of the office	
points) and select the correct answer List I (A) NH ₃ (B) PH ₃ (C) AsH ₃ (C) AsH ₄ (D) SbH ₃ (S) 264 K (E) BiH ₃ (A) A-p, B-q, C-t, D-s, E-p (b) A-t, B-r, C-q, D-s, E-p (c) A-p, B-s, C-t, D-q, E-r (d) A-p, B-q, C-r, D-s, E-t 145. Match the orbital overlap figures shown in List-I with the description gives in List-II and select the correct answer using the code given belwo the lists: List I List II List II List II List II List II (A) B ₂ (Column I (A) B ₂ (P) Paramagnetic (P) Undergoes oxidation (P) O ₂ (S) Bond order ≥ 2 (P) Mixing of s and porbitals (P) O ₂ (S) Bond order ≥ 2 (P) Mixing of s and porbitals (P) O ₂ (S) Bond order ≥ 2 (P) Mixing of s and porbitals (P) O ₃ (S) Bond order ≥ 2 (P) Mixing of s and porbitals (P) O ₄ (D) O ₅ (E) BiH ₃ (C) AsH ₄ (D) Paramagnetic (P) Undergoes reduction (P) O ₂ (S) Bond order ≥ 2 (P) Mixing of s and porbitals (P) O ₄ (P) O ₅ (P) O ₆ (P) O ₇ (P) Undergoes reduction (P) O ₇ (P) O ₈ (P) Paramagnetic (P) O ₈ (1. $p - a \pi$ antibonding	should be as shown on the side:	
points) and select the correct answer List I (A) NH ₃ (B) PH ₃ (C) AsH ₃ (C) AsH ₃ (D) SbH ₃ (S) 264 K (E) BiH ₃ (a) A-p, B-q, C-t, D-s, E-p (b) A-t, B-r, C-q, D-s, E-p (c) A-p, B-s, C-t, D-q, E-r (d) A-p, B-q, C-r, D-s, E-t 145. Match the orbital overlap figures shown in List-I with the description gives in List-II and select the correct answer using the code given belwo the lists: Column I (A) B ₂ (p) Paramagnetic (B) N ₂ (q) Underoges oxidation (C) O ₂ (r) Undergoes reduction (D) O ₂ (s) Bond order ≥ 2 (t) Mixing of s and p-orbitals Integer Type Questions A B C D	D I n d = antihanding		
points) and select the correct answer List I (A) NH ₃ (B) PH ₃ (C) AsH ₃ (r) 186 K (E) BiH ₃ (a) A-p, B-q, C-t, D-s, E-p (b) A-t, B-r, C-q, D-s, E-p (c) A-p, B-s, C-t, D-q, E-r (d) A-p, B-q, C-r, D-s, E-t 145. Match the orbital overlap figures shown in List-I with the description gives in List-II and select the correct answer using the code given belwo the lists: (B) N ₂ (Take Z-axis as the internuclear axis) 148. Column II (A) B ₂ (p) Paramagnetic (B) N ₂ (q) Underoges oxidation (C) O ₂ (r) Undergoes reduction (D) O ₂ (s) Bond order ≥ 2 (t) Mixing of s and p-orbitals Integer Type Questions Directions: The answer to each of the following questions is a single digit integer, ranging from 0 to 9. If the correct 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Dist I		
List I (A) NH ₃ (B) PH ₃ (C) AsH ₃ (D) SbH ₃ (E) BiH ₃ (E) A-p, B-q, C-t, D-s, E-p (c) A-p, B-s, C-t, D-q, E-r (d) A-p, B-q, C-r, D-s, E-t 145. Match the orbital overlap figures shown in List-II with the description gives in List-II and select the correct answer using the code given belwo the lists: (B) N ₂ (ClumnI (Cake Z-axis as the internuclear axis) (A) B ₂ (p) Paramagnetic (A) B ₂ (q) Underoges oxidation (C) O ₂ (r) Undergoes reduction (D) O ₂ (s) Bond order ≥ 2 (t) Mixing of s and p-orbitals Integer Type Questions Directions: The answer to each of the following questions is a single digit O (D) O (D) O (D) O (D) O (D) O (D) O (E) BiH ₃ (D) O (D) O (E) BiH ₃ (D) O (D) O (E) BiH ₃ (D) O (D) O (D) O (D) O (E) BiH ₃ (D) O (E) BiH ₃ (D) O (D) O (D) O (D) O (E) BiH ₃ (D) O (D) O (D) O (D) O (E) BiH ₃ (D) O (D	List I List II	answer to the question numbers A. B. C	
points) and select the correct answer List I (A) NH ₃ (B) PH ₃ (C) AsH ₃ (C) AsH ₃ (D) SbH ₃ (E) BiH ₃ (E) A-p, B-q, C-t, D-s, E-p (c) A-p, B-s, C-t, D-q, E-r (d) A-p, B-q, C-r, D-s, E-t 145. Match the orbital overlap figures shown in List-II with the description gives in List-II and select the correct answer List I (C) A-p, B-q, C-t, D-s, E-p (b) A-t, B-r, C-q, D-s, E-p (c) A-p, B-s, C-t, D-q, E-r (d) A-p, B-q, C-r, D-s, E-t (B) N ₂ (C) O ₂ (C) O ₂ (F) Undergoes oxidation (C) O ₂ (F) Undergoes reduction (D) O ₂ (S) Bond order ≥ 2 (t) Mixing of s and p-orbitals Integer Type Questions Directions: The answer to each of the O D O O O O O O O O O O O O		integral of the second of the	
points) and select the correct answer List I (A) NH ₃ (B) PH ₃ (C) AsH ₃ (D) SbH ₃ (E) BiH ₃		Directions: The answer to each of the	
points) and select the correct answer List I (A) NH (B) PH (C) AsH (B) BiH (B) BiH (B) BiH (C) A-p, B-q, C-t, D-s, E-p (C) A-p, B-s, C-t, D-q, E-r (B) M_{2p_y} (C) Aswing as the internuclear axis) (Take Z-axis as the internuclear axis) (A) B (B) N (Column II (A) B (B) N (C) O (C) O (D) O (D) O (D) O (E) BiH (D) M_{2p_y} (D) Quarangentic (E) BiH (D) O (D) O (E) BiH (E) BiH (E) BiH (D) O (E) BiH (E		Integer Type Questions	
points) and select the correct answer List I (A) NH ₃ (B) PH ₃ (C) (C) As H ₃ (D) Sb H ₃ (E) Bi		, , , , , , , , , , , , , , , , , , ,	
points) and select the correct answer List I (A) NH ₃ (B) PH ₃ (C) AsH ₃ (D) SbH ₃ (E) BiH (B) PH ₃ (C) AsH ₃ (C	(a) A-p, B-q, C-t, D-s, E-p (b) A-t, B-r, C-q, D-s, E-p	-	
points) and select the correct answer List I (A) NH ₃ (B) PH ₃ (C) As H ₃ (C) As H ₃ (C) As H ₃ (D) 290 K (E) W _{2py} (S) gerate (Take Z-axis as the internuclear axis) 148. Column I (A) B ₂ (D) Paramagnetic (B) N ₂ (Q) Underoges oxidation		· · · · · · · ·	
points) and select the correct answer List I (A) NH ₃ (B) PH ₃ (B) PH ₃ (Column II (A) NH ₃ (Column II (A) NH ₃ (Column II (A) NH ₃ (Column II (Column		· · · · 2	
points) and select the correct answer List I (A) NH ₃ (b) N _{2p_y} (Take Z-axis as the internuclear axis) 148. Column I (A) Column II (A) Column II			
points) and select the correct answer List I List II (D) N-2p _y (S) gerace (Take Z-axis as the internuclear axis)			
points) and select the correct answer		,	
144 Match List I (Molecules) with List-II (Boiling		(D) π_{2p_y} (s) gerade	
	144 Match List I (Molecules) with List-II (Roiling	· *	

ADDRESS:- 2/2B Kasturba Gandhi Marg Near Mayohall Kutchery Road Prayagraj

Directions: Each questions given below contains STATEMENT-1 (Assertion) and STATEMENT-2 (Reason). It

has four choices (a), (b), (c) and (d) out of which ONLY ONE

is correct. Choose the correct choice as under:

(p) 0

(q) 1

(r) 2

(B) σ*_{2pz}

(C) $\pi_{2p_x}^*$

- (a) Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statemetn-1.
- (b) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
- (c) Statement-1 is True, Statement-2 is False.
- (d) Statement-1 is False, Statement-2 is True.
- 162. **Statement-1:** LiCl is covalent whereas NaCl is ionic. **Statement-2:** Greater the size of the cation, greater is its polarising power.
- 163. **Statement-1:** H_2 molecule is more stable than HeH molecule.

Statement-2: The antibonding electron in the molecule destabilises it.

164. **Statement-1:** NO_3^- and CO_3^{2-} ion both are triangular planar.

Statement-2: Hybridization of central atom in both is sp^2 .

165. **Statement-1:** BF_3 molecule is planar while NF_3 is pyramidal.

Statement-2: N atom is smaller than B.

166. **Statement-1:** *o*-Nitrophenol has a higher boiling point than *p*-Nitro-phenol.

Statement-2: Intramolecular hydrogen bonding occurs in *p*-Nitro-phenol

167. **Statement-1:** The boiling point of NH₃ lies between that of SbH₂ and BiH₂

Statement-2: PH_3 has much lower boiling point than NH_3 but it increases from PH_3 to AsH_3 to SbH_3 to BiH_3 due to increase in van der Waals forces.

TYPE II

Directions: In each of the following questions, a statement of Assertion (A) is given followed by a corresponding statement of Reason (R) just below it. Of the statemeths, mark the correct answer as

- (a) If both assertion and reason are true, and reason is the true explanation of the assertion.
- (b) If both assertion and reason are true, but reason is not the true explanation of the assertion.
- (c) If assertion is true, but reason is false.
- (d) If both assertion and reason are false
- 168. **Assertion:** Nitrogen shows a valency of 3 as well as 5.

Reason: Lewis symbol of nitrogen is :N·

- 169. **Assertion:** Ionic compounds tend to benon-volatile. **Reason:** Ionic compounds are sold.
- 170. **Assertion:** Water is specially effective in screening the electrostatic interactions between the dissolved ions.

Reason: The electrostatic forces between two charged ions are inversely proportional to the dielectric constant of the solvent.

171. **Assertion:** SF₆ is not a stable molecule.

Reason: A stable molecule must have 8 electrons around the central atom, *i.e.*, octet rule should be satisfied.

172. **Assertion:** The bond angle of PBr₃ is greater than that of PH₃ but bond angle of NBr₃ is less than that of NH₃

Reason: Electronegativity of phosphorus atom is less than that of nitrogen.

173. **Assertion:** H-S-H bond angle of H₂S is closer to 90° but H-O-H bond angle in H₂O is 104.5°.

Reason: lp - lp repulson is stronger in H_2S than in H O.

174. **Assertion:** When two hydrogen atoms approach each other to form a covalent bond, between them, potential energ of the system continusily decrease.

Reason: When two atoms approach each other to form a covalent bond between them, potential energy of the system continuously decreases.

175. **Assertion:** Pi bond is never formed alone. It is formed along with a sigma bond.

Reason: Pi bond is formed by sideway overlap of porbitals only.

176. **Assertion:** The atoms in a covalent molecule are said to share electrons, yet some covalent molecules are polar.

Reason: In a polar covalent molecule, the shared electrons spend more time than average near one of the atoms.

177. Assertion: Boiling points of cis-isomers are higher than trans-isomers.

Reason: Dipole moments of cis-isomers are higher than trans-isomers.

178. Assertion: NO_3^- is planar while NH_3 is pyramidal.

Reason: N in NO_3^- has sp^2 and in NH_3 has sp^3 hybridization.

179. **Assertion:** SeCl₄does not have a tetrahedral structure.

Reason: Se in SeCl₄ has two lone pairs.

180. Assertion: N_3^- is a weaker base than NH_2^- .

Reason: The lone pair of electrons on N atom in N_3^- is in the sp^2 -orbital while in NH_2^- , it is in an sp^3 -orbital.

181. **Assertion:** BF_3 molecule is planar but NF_3 is pyramidal.

Reason: N atom is smaller than B.

182. **Assertion:** The resonance hybrid is more stable than any of the contributing structure.

Reason: The contributing structures contain the same number of unpaired electrons and have the real existence.

183. **Assertion:** Both $\pi(2p_x)$ and $\pi^*(2p_x)$ moleclar orbitals have one nodal plane each.

Reason: All molecular orbitals formed by sideway overlaping of 2p orbitals have one nodal plane.

184. **Assertion:** H_2 , Li_2 and B_2 each has a bond order of 1 and hence are equally stable.

Reason: Stability of molecule/molecular ion depends only on bond order.

185. **Assertion:** Bond order can assume any value including zero.

Reason: Higher the bond order, shorter is the bond length and greater is the bond energy.

186. **Assertion:** B₂ molecule is diamagnetic.

Reason: The highest occupied molecular orbital is of σ -type.

187. **Assertion:** Molecular nitrogen is less reactive than molecular oxygen.

Reason: The bond length of N_2 is shorter than that of oxygen.

188. **Assertion:** H_2 molecule is more stable than HeH molecule.

Reason: The antibonding electronin the molecule destabilises it.

189. **Assertion:** The HF₂ ion exists in the solid state and also in the liquid state but not in aqueous solution. **Reason:** The magnitude of hydrogen bonds in between HF - HF molecules is weaker than that in between HF and H₂O molecules.

190. **Assertion:** Both o-hydroxy benzaldehyde and p-hydroxy benzaldehyde have same molecular weight and show H-bonding.

Reason: Melting point of p-hydroxy benzaldehyde is more.

191. **Assertion:** H₂O is the only hydride of group-16 which is liquid at ordinary temperature.

Reason: In ice, each oxygen atom is surrounded by two covalent bonds and two hydrogen bonds.

NCERT Exemplar Problems

- Isostructural species are those which have the same shape and hybridisation. Among the given species, identify the isostructural pairs.
 - (a) $[NF_3 \text{ and } BF_3]$
- (b) $[BF_4^- \text{ and } NH_4^+]$
- (c) [BCl₃ and BrCl₃]
- (d) $[NH_3 \text{ and } NO_3^-]$
- Polarity in a molecule and hence the dipole moment depends primarily on electronegativity of the constituent atoms and shape of a molecule. Which of the following has the highest dipole moment?
 - (a) CO₂ (c) H₂O

β.

- (b) HI (d) SO₂
- (c) H₂O
- The types of hybrid orbitals of nitrogen in $\mathrm{NO}_2^{\scriptscriptstyle +},\mathrm{NO}_3^{\scriptscriptstyle -}$
- and $\mathrm{NH}_{4}^{^{+}}$ respectively are expected to be
 - (a) sp, sp^3 and sp^2
- (b) sp, sp^2 and sp^3
- (c) sp^2 , sp and sp^3
- (d) sp^2, sp^3 and sp
- 4. Hydrogen bonds are formed in many compounds e.g., H₂O, HF, NH₃. The boiling point of such compounds depends to a large extent on the strength of hydrogen bond and the number of hydrogen bonds. The correct decreasing order of the boiling points of above compounds is
 - (a) HF > H_2O > NH_3
- (b) $H_0O > HF > NH_0$
- (c) $NH_3 > HF > H_2O$
- (d) $NH_3 > H_2O > HF$
- In PO₄³⁻ ion, the formal charge on the oxygen atom of P - O bond is
 - (a) +1

- (b) -1
- (c) -0.75

- (d) +0.75
- 6. In NO₃ ion, the number of bond pairs and lone pairs of electrons on nitrogen atom are
 - (a) 2, 2

(b) 3,1

(c) 1, 3

- (d) 4, 0
- 7. Which of the following species has tetrahedral geometry?

(a) BH₄

(b) NH₂

(c) CO₃²⁻

- (d) H_3O^+
- 8. Number of π bonds and σ bonds in the following structure is

(a) 6, 19

(b) 4, 20

(c) 5, 19

- (d) 5, 20
- 9. Which molecule/ion out of the following does not contain unpaired electrons?
 - (a) N_2^+

(b) O₂

(c) O_2^{2-}

- (d) B₂
- 10. In which of the following molecule/ion all the bonds are not equal?
 - (a) XeF₄

(b) BF_{4}^{-}

(c) C_0H_4

- (d) SiF₄
- 11. In which of the following substances will hydrogen bond be strongest?
 - (a) HCl

(b) H₂O

(c) HI

- (d) H_2^2 S
- 12. If the electronic configuration of an element is $1s^2 2s^2$
 - $2p^6\,3s^2\,3p^6\,3d^2\,4s^2$, the four electrons involed in chemical bond formation will be
 - (a) $3p^6$

- (b) $3p^6, 4s^2$
- (c) $3p^6, 3d^2$
- (d) $3d^2$, $4s^2$
- 13. Which of the following angle corresponds to sp^2 hybridisation?
 - (a) 90°

(b) 120°

(c) 180°

- (d) 109°
- 14. Which of the following order of energies of molecular orbitals of $\rm N_2$ is correct?
 - (a) $(\pi 2p_y) < (\sigma 2p_z) < (\pi * 2p_x) \approx (\pi * 2p_y)$
 - (b) $(\pi 2p_y) > (\sigma 2p_z) > (\pi * 2p_x) \approx (\pi * 2p_y)$
 - (c) $(\pi 2p_y) < (\sigma 2p_z) > (\pi * 2p_x) \approx (\pi * 2p_y)$
 - (d) $(\pi 2p_y) > (\sigma 2p_z) < (\pi * 2p_x) \approx (\pi * 2p_y)$
- 15. Which of the following statements is not correct from the view point of molecular orbital theory?
 - (a) Be_2 is not a stable molecule.
 - (b) He_2 is not stable but He_2^+ is expected to exist.
 - (c) Bond strength of $\rm N_2$ is maximum amongst the homonuclear diatomic molecules belonging to the second period.
 - (d) The order of energies of molecular orbitals in N $_2$ molecular is $\sigma 2s < \sigma * 2s < \sigma 2p_z < (\pi 2p_x = \pi 2p_y) < (\pi 2p_x = \pi 2p_y)$

$$(\pi * 2p_x = \pi * 2p_y) < \sigma * 2p_z$$

```
ANSWER
1-(b)
         2-(c)
                   3-(b)
                           4-(d)
                                    5-(d)
                                             6-(a)
                                                     7-(a)
8-(c)
         9-(c)
                   10-(b)
                           11-(c)
                                    12-(c)
                                            13-(d)
                                                     14-(d)
15-(b)
         16-(c)
                   17-(b)
                           18-(c)
                                    19-(d)
                                            20-(a)
                                                     21-(a)
22-(c)
         23-(a)
                   24-(a)
                           25-(c)
                                    26-(d)
                                            27-(b)
                                                     28-(a)
29-(b)
         30-(c)
                   31-(b)
                           32-(a)
                                            34-(b)
                                    33-(b)
                                                     35-(b)
         37-(c)
                           39-(d)
                                    40-(d)
                                            41-(d)
36-(b)
                   38-(d)
                                                     42-(c)
         44-(c)
                   45-(b)
                           46-(d)
                                    47-(a)
                                            48-(c)
                                                     49-(b)
43-(b)
50-(a)
         51-(a)
                   52-(b)
                           53-(d)
                                    54-(d)
                                            55-(c)
                                                     56-(a)
57-(b)
         58-(d)
                   59-(a)
                           60-(a)
                                    61-(c)
                                            62-(d)
                                                     63-(d)
64-(a)
         65-(b)
                   66-(b)
                           67-(a)
                                    68-(d)
                                            69-(d)
                                                     70-(b)
71-(b)
                           74-(d)
         72-(d)
                   73-(a)
                                    75-(c)
                                            76-(a)
                                                     77-(c)
78-(a)
         79-(b)
                   80-(d)
                           81-(d)
                                    82-(d)
                                            83-(c)
                                                     84-(a)
85-(d)
                   87-(a)
                           88-(a)
                                    89-(c)
                                            90-(c)
                                                     91-(d)
         86-(a)
92-(d)
         93-(b)
                   94-(b)
                           95-(d)
                                    96-(c)
                                            97-(b)
                                                     98-(c)
99-(d)
                   101-(a) 102-(c) 103-(d) 104-(b) 105-(a)
         100-(b)
                   108-(a) 109-(b) 110-(b) 111-(c) 112-(c)
106-(c)
         107-(c)
113-(c)
114-(a,b,d)
                   115-(a,b,c,d)
                                    116-(a,b)
117-(b,d)
                   118-(a,b)
                                    119-(a,c)
                   121-(b,c)
120-(b,c,d)
                                    122-(a,c,d)
123-(a,b,d)
                   124-(b,c)
                                    125-(a,c)
126-(a,d) 127-(a) 128-(d) 129-(b) 130-(c) 131-(d) 132-(c)
133-(c) 134-(a) 135-(d) 136-(b) 137-(c) 138-(c) 139-(b)
140-(a) 141-(d) 142-(b) 143-(d) 144-(b) 145-(c)
146-(A-p,q; B-q; C-p,q,r; D-p,q,r,s)
147-(A-p,s; B-q; C-qs, D-r,s)
148-(a-p,r,t; B-s,t; C-p,q; D-p,q,s)
149-(4) 150-(7) 151-(6) 152-(8) 153-(0) 154-(6) 155-(4)
156-(4)
         157-(4) 158-(0) 159-(4) 160-(8) 161-(4) 162-(c)
                  165-(b) 166-(d) 167-(d) 168-(a) 169-(b)
163-(b)
         164-(a)
                  172-(b) 173-(b) 174-(c) 175-(c) 176-(c)
170-(b)
         171-(d)
177-(a)
         178-(a) 179-(c) 180-(a) 181-(b) 182-(c) 183-(d)
         185-(b) 186-(d) 187-(a) 188-(b) 189-(a) 190-(b)
184-(d)
191-(b)
NCERT Exemplar Problems
1-(b)
         2-(c)
                   3-(b)
                           4-(b)
                                    5-(b)
                                                     7-(a)
                                             6-(d)
8-(c)
         9-(c)
                   10-(c)
                           11-(b) 12-(d)
                                            13-(b)
                                                     14-(a)
15-(d)
```