	JEE MAIN CHEMICA POINT NEET AIIMS						
	DVANCED	IDICOD					
	A Challenge	in Chemistry JIPMER					
I	NGINEERING SOME BASIC CONCER	MEDICAL MEDICAL					
	SOME BASIC CONCEP	PT OF CHEMISTRY					
1	Which of the following is a chemical fertilizer?	13. The total number of electrons in 18 mL of water (density					
1.	(a) Urea (b) Sodium nitrate	= 1 g mL ⁻¹) is					
	(c) Ammonium sulphate (d) All of these	(a) 6.02×10^{23} (b) 6.02×10^{25}					
2.	Which one of the following is not a mixture?	(c) 6.02×10^{24} (d) $6.02 \times 18 \times 10^{23}$					
	(a) Brass(b) Air(c) 22 carat gold(d) Water	14. A gas mixture contains 50% helium and 50% methane					
3.	1 mm Hg represents a pressure of	by volume. What is the percent by weight of methane in the mixture?					
0.	(a) 101.3 N m^{-2} (b) 1013 N m^{-2}	(a) 19.97% (b) 20.05%					
	(c) 133.3 N m^{-2} (d) 1333 N m^{-2}	(c) 50% (d) 80.03%					
4.	The number of significant figures in π are	1 1					
	(a) 1 (b) 2	15. If we consider that $\frac{1}{6}$, in place of $\frac{1}{12}$, mass of carbon					
_	(c) 3 (d) infinite Two oxides of a metal contain 36.4% and 53.4% of oxygen	atom is taken to be relative atomic mass unit, the mass					
5.	by mas respectively. If the formula of first oxide is $M_{2}O_{1}$						
	then that of the second is	(a) increase two fold					
	(a) M_2O_3 (b) MO	(b) decrease twice					
	(c) MO_{2} (d) $M_{2}O_{5}$	(c) be a function of molecular mass of the substance					
6.	Which one of the following sets of compounds correctly	(d) remain unchanged16. A person has as many notes as number of oxygen atoms					
	illustrates the law of reciprocal proportions?	in 24.8 g N Na ₂ S ₂ O ₃ .5H ₂ O (mol. wt. = 248). A note					
	(a) P_2O_3 , PH_3 , H_2O (b) P_2O_5 , PH_3 , H_2O (c) N_2O_5 , NH_3 , H_2O (c) N_2O , NH_3 , H_2O	counting machine counts 48 million notes per day. How					
7.	116 mg of a compound on vaporisation in a Victor	many days it would take to count these notes?					
	Meyer's apparatus displaces 44.8 ml of air measured	(a) 10^{12} (b) 10^{14}					
	at STP. The molecular weight of the compound is	(c) 10^{16} (d) 10^{18}					
	(a) 116 (b) 232	17. Volume occupied by one molecule of water (density = 1 g cm ⁻³) is					
8.	(c) 58 (d) 44.8 An element X has the following isotopic composition:						
0.	$^{200}X:90\%$, $^{199}X:8.0\%$, $^{202}X:2.0\%$						
	The weighted average atomic mass of the naturally	(c) 3.0×10^{-23} cm ³ (d) 5.5×10^{-23} cm ³					
	occuring element X is closest to:	18. The mass of 2.24×10^{-3} m ³ of a gas is 4.4 g at 273.15 K and 101.225 kBa measure. The gas may be					
	(a) 199 amu (b) 200 amu	and 101.325 kPa pressure. The gas may be (a) NO (b) NO ₂					
	(c) 201 amu (d) 202 amu	(d) HO_2 (c) C_3H_8 (d) HH_3					
9.	One litre of a gas is at a pressure of 10^{-6} mm of Hg at 25° C. How many molecules are present in the vessel?	19. The total number of atoms of all elements present in					
	(a) 3.2×10^6 (b) 3.2×10^{13}	mole of ammonium dichromate is					
	(c) 3.2×10^{10} (d) 3×10^{4}	(a) 19 (b) 6.023×10^{23}					
10.	If 10^{21} molecules are removed from 200 mg of CO ₂ , then	(c) 114.473×10^{23} (b) 84.322×10^{23} 20. If 1 mL of water contains 20 drops, then number of					
	the number of moles of CO_2 left are	molecules in a drop of water is					
f nom	(a) 2.88×10^{-3} (b) 1.66×10^{-3}	(a) 6.023×10^{23} (b) 1.376×10^{26}					
11	(c) 4.54×10^{-3} (d) 1.66×10^{-2} 10 dm ³ of N ₂ gas and 10 dm ³ of gas X at the same	(c) 1.673×10^{21} (d) 4.346×10^{20}					
11.	temperature contain the same number of molecules.	21. Which has the maximum number of molecules among					
	The gas X is	the following? (b) 48×6					
	(a) CO (b) CO_2	(a) $44 \text{ g of } \text{CO}_2$ (b) 48 g O_2 (c) 8 g H_2 (d) 64 g SO_2					
	(c) H_2 (d) NO	(c) 8 g H_2 (d) 64 g SO_2 22. In which case is the number of molecules of water					
$ ^{12}$.	How many moles of electrons weight one kilogram?	maximum?					
	(a) 6.023×10^{23} (b) $\frac{1}{9.108} \times 10^{31}$	(a) 18 mL of water					
		(b) 0.18 g of water					
	(c) $\frac{6.023}{9.108} \times 10^{25}$ (d) $\frac{1}{9.108 \times 9.023} \times 10^8$	(c) 0.00224 L of water vapour at 1 atm and 273 K (d) 10^{-3} mol of water					
		(d) 10 ⁻³ mol of water					
	ADDRESS :2/2-B, Kasturba Gandhi Marg. POINT Mob.: 98392	Near Mayonall Crossing, Kutchery Road , Prayagraj 206708, 9984889076					

Some Basic Concepts of Chemistry

23.	Which one of the following is the lightest?		(a) 70 (b) 140
	(a) 0.2 mole of hydrogen gas		(c) 100 (d) 65
	(b) 6.023×10^{22} molecules of nitrogen	34.	The percentage of Se in peroxidase anhydrous enzyme
	(c) 0.1 g of silver		is 0.5% by weight (atomic weight = 78.4). Then
	(d) 0.1 mole of oxygen gas		minimum molecular weight of peroxidase anhydrous
	(e) 1 g of water		enzyme is
24.	50 ml 10 N H_2SO_4 , 25 ml 12 N HCl and 40 ml 5 N HNO ₃		(a) 1.568×10^4 (b) 1.568×10^3
	were mixed together and the volume of the mixture		(c) 15.68 (d) 3.136×10^4
	was made 1000 ml by adding water. The normality of	35.	The crystalline salt Na_2SO_4 . $x H_2O$ on heating loses
	the resultant solution will be:		55.9% of its weight. The formula of the crystalline salt
	(a) 1 N (b) 2 N		is
	(c) 3 N (d) 4 N		(a) $Na_2SO_4 \cdot 5H_2O$ (b) $Na_2SO_4 \cdot 7H_2O$
25.	A 0.1 M basic solution is required from $Ca(OH)_2$ which		
	is 40% ionized. Analytical molarity of $Ca(OH)_2$ should		(c) $Na_2SO_4 \cdot 2H_2O$ (d) $Na_2SO_4 \cdot 10H_2O$
	be	36.	0.1 mole of a carbohydrate with empirical formula $CH_{2}O$
	(a) 0.125 M (b) 0.25 M		contains 1 g of hydrogen. What is its molecular formula?
	(c) 0.4 M (d) 0.5 M		(a) $C_2 H_{10} O_5$ (b) $C_6 H_{12} O_6$
	25.3 g of sodium carbonate, Na_2CO_3 is dissolved in		(c) $C_4 H_8 O_4$ (d) $C_3 H_6 O_3$
	enough water to make 250 mL of solution. If sodium	37.	The most abundant elements by mass in the body of a
	carbonate dissociates completely, molar concentration		healthy human adult are:
	of sodium ions, $\mathrm{Na}^{\scriptscriptstyle +}$ and carbonate ions, CO_3^{2-} are		Oxygen (61.4%), Carbon (22.9%), Hydrogen (10.0%) and
	respectively (Molar mass of $Na_2CO_3 = 106 \text{ g mol}^{-1}$)		Nitrogen (2.6%)
	(a) 0.477 M and 0.477 M (b) 0.955 M and 1.910 M		The weight which a 75 kg person would gain if all the
	(c) 1.910 M and 0.955 M (d) 1.90 M and 1.910 M	on	¹ H atoms are replaced ² H atoms is
27	The number of molecules in 100 ml of $0.02 \text{ N H}_2\text{SO}_4$ is		(a) 7.5 kg (b) 10 kg
	(a) 6.02×10^{22} (b) 6.02×10^{21}		(c) 15 kg (d) 37.5 kg
	(c) 6.02×10^{20} (d) 6.02×10^{18}	38.	The ratio of mass percent of C and H of an organic
	A 100 ml solution of 0.1 N HCl was titrated with 0.2 N		compound $(C_x H_y O_z)$ is 6 : 1. If one molecule of the above
	NaOH solution. The titration was discontinued after		compound $(C_x H_y O_z)$ contains half as much oxygen as
	adding 30 ml of NaOH solution. The remaining titration		required to burn one molecule of compound $C_x H_y$
	was completed by adding 0.25 N KOH solution. The		complete to CO_2 and H_2O , the empirical formula of the
	volume of KOH required for completing the titration is		compound $C_x H_y O_z$ is
	(a) 70 ml (b) 32 ml		(a) $C_{3}H_{6}O_{3}$ (b) $C_{2}H_{4}O$
	(c) 35 ml (d) 16 ml		(c) $C_{3}H_{4}O_{2}$ (d) $C_{2}H_{4}O_{3}$
	The ratio of masses of oxygen and nitrogen in a	39.	In Haber process, 30 litres of dihydrogen and 30 litres
	particular gaseous mixture is 1 : 4. The ratio of the		of dinitrogen were taken for reaction which yielded only
	number of their molecules is		50% of the expected product. What will be the
	(a) 3:16 (b) 1:4		composition of the gaseous mixture under the aforesaid
	(c) 7:32 (d) 1:8	~	condition in the end?
	A mixture of gases contains H_2 and O_2 gases in the	Ch	(a) 20 litres NH_3 , 25 litres N_2 , 20 litres H_2
	ratio of $1:4$ (w/w). What is the molar ratio of the two		(b) 10 litres NH_3 , 25 litres N_2 , 15 litres H_2
	gases in the mixture?		(c) 20 litres NH_3 , 10 litres N_2 , 30 litres H_2
	(a) 16:1 (b) 2:1	40	(d) 20 litres NH_3 , 25 litres N_2 , 15 litres H_2 The number of males of hydrograp melonular required
	(c) 1:4 (d) 4:1	40.	The number of moles of hydrogen molecules required
31.	Suppose two elements X and Y combine to form two		to produce 20 moles of ammonia through Haber's
	compounds XY_2 and X_3Y_2 . When 0.1 mol of XY_2 weight		process is (b) 10
	10 g and 0.05 mol of $X_{3}Y_{2}$ weighs 9 g, the atomic weights		(a) 40 (b) 10 (c) 20 (d) 30
	of X and Y are	11	
ĥ	(a) 40, 30 (b) 60, 40	41.	For the formation of 3.65 g of hydrogen chloride gas,
	(c) 20, 30 (d) 30, 20		what volumes of hydrogen gas and chlorine gas are required at N.T.P. conditions?
32.	5 moles of AB $_2$ weigh 125 \times 10 3 kg and 10 moles of A $_2B_2$		(a) 1.12 lit., 1.12 lit (b) 1.12 lit., 2.24 lit
onceh	weigh 300×10^{-3} kg		(a) 1.12 ht., 1.12 ht. (b) 1.12 ht., 2.24 ht (c) 3.65 lit., 1.83 lit (d) 1 lit., 1 lit.
	The molar mass of $A(M_A)$ and molar mass of $B(M_B)$ in kg	42	The mass of carbon anode consumed (giving only carbon
	mol ⁻¹ are	74.	dioxide) in the production of 270 kg of aluminium metal
	(a) $M_A = 10 \times 10^{-3}$ and $M_B = 5 \times 10^{-3}$		from bauxide by the Hall process is:
	(b) $M_A = 25 \times 10^{-3}$ and $M_B = 50 \times 10^{-3}$		(a) 90 kg (b) 540 kg
The last	(c) $M_A = 50 \times 10^{-3}$ and $M_B = 25 \times 10^{-3}$		(a) 90 kg (b) 340 kg (c) 180 kg (d) 270 kg
	(d) $M_A^{-} = 5 \times 10^{-3}$ and $M_B^{-} = 10 \times 10^{-3}$		(d) 270 kg (d) 270 kg
	An organic compound made of C, H and N contains	43	The dehydration yield of cyclohexanol to cyclohexene
	20% nitrogen. Its minimum molecular weight is	10.	is 75%. The yield obtained when 100 g of cyclohexanol
Ì			15 . 5 , 0, The plane oscillation which 100 g of cyclolic Adiloi
	ADDERS .0/0 D. Kastanka Candle Marrie	Noor 1	
CH	ADDRESS:2/2-B. Kasturba Gandhi Marg. I OINT Mob.: 98392		

Some Basic Concepts of Chemistry

 $2022/Problem Sheet/Chemistry/Some \ Basic Concepts of Chemistry$

5011	e Basic Concepts of Chemistry								
	is dehydrated will be		(c) 0.011 (d) 0.029						
	(a) 82.35 g (b) 61.76 g	54							
		54.	1 gram of a carbonate (M_2CO_3) on treatment with excess						
	(c) 38.34 g (d) 17.65 g		HCl produces 0.01186 mole of CO_2 . The molar mass of						
44.	A mixture of CO_2 and CO is passed over red hot		M_2CO_3 in g mol ⁻¹ is						
	graphite when 1 mole of mixture changes to 33.6 L		(a) 118.6 (b) 11.86						
	(converted to STP). Hence, mole fraction of CO_2 in the		(c) 1186 (d) 84.3						
	mixture is	55.	In an experiment, 4 g of M_2O_x oxide was reduced to 2.8						
	(a) 0.25 (b) 0.33		g of the metal. If the atomic mass of the metal is 56 g						
	(c) 0.50 (d) 0.66		mol ⁻¹ , the number of O atoms in the oxide is						
45.	3.28 g of a sample of pure copper when heated in		(a) 1 (b) 2						
	presence of oxygen for some time forms black copper		(c) 3 (d) 4						
	oxide (CuO) which weighs 3.92 g. What approximate	56.	When 22.4 litres of $H_2(g)$ is mixed with 11.2 litres of						
	percent of copper remains unoxidized?		Cl ₂ (g), each at S.T.P., the moles of HCl(g) formed is						
	(a) 4.6% (b) 5.6%		equal to						
	(c) 6.6% (d) 7.6%		-						
16									
46.	An ore contains 1.24% of the mineral argentite, Ag_2S		(c) 0.5 mol of HCl (g) (d) 1.5 mol of HCl (g)						
	by mass. How many grams of this ore would have to be	57.	1.0 g of magnesium is burnt with 0.56 g O_2 in a closed						
	processed in order to obtain 1.0 g of pure solid silver?		vessel. Which reactant is left in excess and how much?						
	(a) 46.3 g (b) 92.6 g		(At. wt. of Mg = 2 , O = 16)						
	(c) 69.45 g (d) 23.15 g		(a) Mg, 0.16 g (b) O_2 , 0.16 g						
47.	A mixture of $CaCl_2$ and NaCl weighing 4.44 g is treated		(c) Mg, 0.44 g (d) O_2^2 , 0.28 g						
	with sodium carbonate solution to precipitate all the	58	The molecular formula of a commercial resin used for						
		50.							
	Ca^{2+} ions as calcium carbonate. The calcium carbonate		exchanging ions in water softening is $C_8H_7SO_3Na$ (mol.						
	so obtained is heated strongly to get 0.56 g of CaO.	on	wt. 206). What would be the maximum uptake of Ca^{2+}						
	The percentage of NaCl in the mixture (atomic mass of		ions by the resin when expressed in mole per gram						
	Ca = 40) is	-	resin?						
	(a) 75 (b) 30.6								
	(c) 25 (d) 69.4		(a) $\frac{1}{103}$ (b) $\frac{1}{206}$						
48	A mixture of ethane and ethene occupies 41 L at 1 atm		(a) $\frac{1}{103}$ (b) $\frac{1}{206}$						
10.	and 500 K. The mixture reacts completely with $10/3$								
			(c) $\frac{2}{309}$ (d) $\frac{1}{412}$						
	mole of oxygen to produce CO_2 and H_2O . The mole		^(c) 309 7 412						
	fraction of ethane and ethene in the mixture are $(R = 1)$	59.	A 100% pure sample of a divalent metal carbonate						
	0.0821 L atm K ⁻¹ mol ⁻¹) respectively	05.	weighing 2g on complete thermal decomposition						
	(a) 0.50, 0.50 (b) 0.75, 0.25								
	(c) 0.67, 0.33 (d) 0.25, 0.75		releases 448 cc of carbon dioxide at STP. The equivalent						
49.	Excess of carbon dioxide is passed through 50 mL of		mass of the metal is						
	0.5 M calcium hydroxide solution. After the completion		(a) 40 (b) 20						
	of the reaction, the solution was evaporated to dryness.		(c) 28 (d) 12						
		60.	When a metal is burnt in oxygen, its weight is increased						
	The solid calcium carbonate was completely neutralised		by 24 per cent. The equivalent weight of the metal will						
	with 0.1 N hydrochloric acid. The volume of hydrochloric	Ch	be						
	acid required is (At. mass of carbon = 40)		(a) 120 (b) 80						
	(a) 200 mL (b) 500 mL		(a) 60 (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c						
	(c) 400 mL (d) 300 mL	<i>с</i> •	(c) 60 (d) 40						
50.	20 mL of methane is completely burnt using 50 mL of	61.	The percentage of an element M is 53 in its oxide of						
	oxygen. The volume of the gas left after cooling to room		molecular formula M_2O_3 . Its atomic mass is about						
	temperature is		(c) 45 (b) 9						
			(c) 18 (d) 27						
	(a) 80 mL (b) 40 mL	62	A metal M of equivalent mass E forms an oxide of						
	(c) 60 mL (d) 30 mL		molecular formula $M_x O_y$. The atomic mass of the metal						
51.	The number of Cl ⁻ ions in 100 mL of 0.001 M HCl solution		is given by the correct equation						
Cinem	is								
CIEI	(a) 6.022×10^{23} (b) 6.022×10^{20}		(a) $2 \to (y/x)$ (b) xy/E						
10 810	(c) 6.022×10^{19} (d) 6.022×10^{24}	-	(c) E/y (d) y/E						
52	What is the mass of precipitate formed when 50 mL of	63.	Sucrose solution which is 40% by mass is heated till						
2			it becomes 50% by mass. Water lost form 100 g of the						
Det	16.9% solution of silver nitrate is mixed with 50 mL of		solution is						
100	5.8% NaCl solution?		(a) 10 g (b) 15 g						
frier	(Ag = 107.8, N = 14, O = 16, Na = 23, Cl = 35.5)		(c) 20 g (d) 25 g						
	(a) 7 g (b) 14 g	64							
	(c) 28 g (d) 3.5 g	0т .	One gram of a mixture of Na_2CO_3 and $NaHCO_3$						
53.	How many moles of lead (II) chloride will be formed		consumes y gram equivalent of HCl for complete						
	from a reaction between 6.5 g of PbO and 3.2 g of HCl?		neutralization. One gram of the mixture is strongly						
4 1 / 2	(a) 0.044 (b) 0.333 heated, then cooled and the residue treated with HCl.								
202									
C	IEMICA ADDRESS :2/2-B. Kasturba Gandhi Marg. N								
		0670	8, 9984889076 [3]						

Some Basic Concepts of Chemistry

	The gram equivalent of HCl now required for complete	KMnO ₄ has different equivalent weight in the basic medium
	neutralization will be	than in the acidic medium. Hence, now a days, mole concept
	(a) 2 y (b) 3 y	is mole common and the concentrations of the solutions
	(c) y (d) $y/2$	are generally expressed in terms of molarities, though some
65	The total ionic strength (total molarity of all the ions)	other methods like molality, mole fraction etc. are also
00.	containing 0.2 M CuSO ₄ and 0.1 M Al ₂ (SO ₄) ₃ is	used.
	(a) $0.5 M$ (b) $0.7 M$	73. The equivalent weight of Cu
~ ~	(c) 0.9 M (d) 1.2 M	(a) will be same in CuO and Cu_2O
66.	If avogadro number (N_A) is changed from 6.022 × 10 ²³ to	(b) will be double in Cu_2O than in CuO
	$6.022 \times 10^{20} \text{ mol}^{-1}$ this would change	(c) will be double in CuO than in Cu_2O
	(a) the ratio of the chemical species to each other in	(d) depends upon whether copper in pure or impure
	a balanced equation	74. The chloride of an element is found to contain 52.8%
	(b) the ratio of the elements to each other in a	chlorine. The equivalent weight of the element is
	compound	(a) 63.4 (b) 31.7
	(c) the definition of the mass in units of gram	(c) 47.2 (d) 18.7
	(d) the mass of one mole of carbon	75. A 40% hydrochloric acid is found to have a density of
67.	375 mg of an alcohol reacts with required amount of	1.20 g mL ⁻¹ . The molarity of the solution is nearly
	methyl magnesium bromide and releases 140 mL of	(a) 11 M (b) 12 M
	methane gas at STP. The alcohol is	(c) 13 M (d) 14 M
	(a) ethanol (b) <i>n</i> -butanol	76. The molality of the above solution will be nearly
	(c) methanol (d) <i>n</i> -propanol	(a) 15.3 m (b) 16.3 m
68.	100 mL of a water sample contains 0.81 g of calcium	(c) 17.3 m (d) 18.3 m
	bicarbonate and 0.73 g of magnesium bicarbonate. The	77. The mole fraction of hydrochloric acid in the solution
	hardness of this water sample expressed in terms of	will be
	equivalents of $CaCO_3$ is (Molar mass of calcium)	
	biacarbonate is 162 g mol^{-1} and magnesium bicarbonate	
	is 146 g mol^{-1}	78. The volume of the above solution required to make 1.0
	(a) 10^2 ppm (b) 10^4 ppm (c) 10^6 ppm (d) 5×10^3 ppm	L of 0.10 M HCl will be
	$(c) = (0^{\circ} nnm)$ $(d) = 5 \times (0^{\circ} nnm)$	(a) $5.6 \mathrm{mL}$ (b) $6.6 \mathrm{mL}$
<u> </u>		
69.	8 g of O_2 has the same number of molecules as	(c) 7.6 mL (d) 8.6 mL
69.	8 g of O_2 has the same number of molecules as (a) 7 g CO (b) 14 g N ₂	(c) 7.6 mL (d) 8.6 mL <u>Matching Type Questions</u>
	8 g of O_2 has the same number of molecules as (a) 7 g CO (b) 14 g N ₂ (c) 11 g CO ₂ (d) 16 g SO ₂	(c) 7.6 mL (d) 8.6 mL <u>Matching Type Questions</u> Match the entries of column I with appropriate entries
	8 g of O_2 has the same number of molecules as (a) 7 g CO (b) 14 g N_2 (c) 11 g CO ₂ (d) 16 g SO ₂ A vessel contains 4.4 g of CO ₂ . It means that it contains	(c) 7.6 mL <u>Matching Type Questions</u> Match the entries of column I with appropriate entries of column II and choose the correct option out of the
	8 g of O_2 has the same number of molecules as (a) 7 g CO (b) 14 g N_2 (c) 11 g CO ₂ (d) 16 g SO ₂ A vessel contains 4.4 g of CO ₂ . It means that it contains (a) 0.1 mol of CO ₂	(c) 7.6 mL <u>Matching Type Questions</u> Match the entries of column I with appropriate entries of column II and choose the correct option out of the
	8 g of O_2 has the same number of molecules as (a) 7 g CO (b) 14 g N_2 (c) 11 g CO ₂ (d) 16 g SO ₂ A vessel contains 4.4 g of CO ₂ . It means that it contains	(c) 7.6 mL <u>Matching Type Questions</u> Match the entries of column I with appropriate entries of column II and choose the correct option out of the
	8 g of O_2 has the same number of molecules as (a) 7 g CO (b) 14 g N_2 (c) 11 g CO ₂ (d) 16 g SO ₂ A vessel contains 4.4 g of CO ₂ . It means that it contains (a) 0.1 mol of CO ₂	 (c) 7.6 mL (d) 8.6 mL <u>Matching Type Questions</u> Match the entries of column I with appropriate entries of column II and choose the correct option out of the four options (a), (b), (c), (d) given at the end of each
	8 g of O_2 has the same number of molecules as (a) 7 g CO (b) 14 g N ₂ (c) 11 g CO ₂ (d) 16 g SO ₂ A vessel contains 4.4 g of CO ₂ . It means that it contains (a) 0.1 mol of CO ₂ (b) 6.02×10^{22} molecules of CO ₂	(c) 7.6 mL (d) 8.6 mL <u>Matching Type Questions</u> Match the entries of column I with appropriate entries of column II and choose the correct option out of the four options (a), (b), (c), (d) given at the end of each question.
70.	8 g of O_2 has the same number of molecules as (a) 7 g CO (b) 14 g N ₂ (c) 11 g CO ₂ (d) 16 g SO ₂ A vessel contains 4.4 g of CO ₂ . It means that it contains (a) 0.1 mol of CO ₂ (b) 6.02×10^{22} molecules of CO ₂ (c) 8.8 g atoms of oxygen	(c) 7.6 mL(d) 8.6 mLMatching Type QuestionsMatch the entries of column I with appropriate entries of column II and choose the correct option out of the four options (a), (b), (c), (d) given at the end of each question.79.Column IColumn IColumn II
70.	8 g of O_2 has the same number of molecules as (a) 7 g CO (b) 14 g N ₂ (c) 11 g CO ₂ (d) 16 g SO ₂ A vessel contains 4.4 g of CO ₂ . It means that it contains (a) 0.1 mol of CO ₂ (b) 6.02×10^{22} molecules of CO ₂ (c) 8.8 g atoms of oxygen (d) 1120 mL of CO ₂ at S.T.P. 1 g Mg was burnt in a closed vessel containing 2g	 (c) 7.6 mL (d) 8.6 mL <u>Matching Type Questions</u> Match the entries of column I with appropriate entries of column II and choose the correct option out of the four options (a), (b), (c), (d) given at the end of each question. 79. Column I Column I (A) German silver and gold (p) Elements jewellery
70.	8 g of O_2 has the same number of molecules as (a) 7 g CO (b) 14 g N ₂ (c) 11 g CO ₂ (d) 16 g SO ₂ A vessel contains 4.4 g of CO ₂ . It means that it contains (a) 0.1 mol of CO ₂ (b) 6.02×10^{22} molecules of CO ₂ (c) 8.8 g atoms of oxygen (d) 1120 mL of CO ₂ at S.T.P. 1 g Mg was burnt in a closed vessel containing 2g oxygen. Which of the following are not correct?	 (c) 7.6 mL (d) 8.6 mL <u>Matching Type Questions</u> Match the entries of column I with appropriate entries of column II and choose the correct option out of the four options (a), (b), (c), (d) given at the end of each question. 79. Column I Column I Column I Column II (A) German silver and gold (p) Elements jewellery (B) Antimony and Bismuth (q) Isomorphs
70.	8 g of O_2 has the same number of molecules as (a) 7 g CO (b) 14 g N ₂ (c) 11 g CO ₂ (d) 16 g SO ₂ A vessel contains 4.4 g of CO ₂ . It means that it contains (a) 0.1 mol of CO ₂ (b) 6.02×10^{22} molecules of CO ₂ (c) 8.8 g atoms of oxygen (d) 1120 mL of CO ₂ at S.T.P. 1 g Mg was burnt in a closed vessel containing 2g oxygen. Which of the following are not correct? (a) 0.25 g of Mg will be left unburnt	 (c) 7.6 mL (d) 8.6 mL <u>Matching Type Questions</u> Match the entries of column I with appropriate entries of column II and choose the correct option out of the four options (a), (b), (c), (d) given at the end of each question. 79. Column I Column I Column I (A) German silver and gold (p) Elements jewellery (B) Antimony and Bismuth (q) Isomorphs (C) ZnSO₄.7H₂O and (r) Polymorphs
70.	8 g of O_2 has the same number of molecules as (a) 7 g CO (b) 14 g N ₂ (c) 11 g CO ₂ (d) 16 g SO ₂ A vessel contains 4.4 g of CO ₂ . It means that it contains (a) 0.1 mol of CO ₂ (b) 6.02×10^{22} molecules of CO ₂ (c) 8.8 g atoms of oxygen (d) 1120 mL of CO ₂ at S.T.P. 1 g Mg was burnt in a closed vessel containing 2g oxygen. Which of the following are not correct? (a) 0.25 g of Mg will be left unburnt (b) 1.33 of O ₂ will be left unreacted	 (c) 7.6 mL (d) 8.6 mL <u>Matching Type Questions</u> Match the entries of column I with appropriate entries of column II and choose the correct option out of the four options (a), (b), (c), (d) given at the end of each question. 79. Column I Column I Column II (A) German silver and gold (p) Elements jewellery (B) Antimony and Bismuth (q) Isomorphs (C) ZnSO₄.7H₂O and (r) Polymorphs FeSO₄.7H₂O
70.	8 g of O_2 has the same number of molecules as (a) 7 g CO (b) 14 g N ₂ (c) 11 g CO ₂ (d) 16 g SO ₂ A vessel contains 4.4 g of CO ₂ . It means that it contains (a) 0.1 mol of CO ₂ (b) 6.02×10^{22} molecules of CO ₂ (c) 8.8 g atoms of oxygen (d) 1120 mL of CO ₂ at S.T.P. 1 g Mg was burnt in a closed vessel containing 2g oxygen. Which of the following are not correct? (a) 0.25 g of Mg will be left unburnt (b) 1.33 of O ₂ will be left unreacted (c) 2.5 g of MgO will be formed	 (c) 7.6 mL (d) 8.6 mL <u>Matching Type Questions</u> Match the entries of column I with appropriate entries of column II and choose the correct option out of the four options (a), (b), (c), (d) given at the end of each question. 79. Column I Column I Column II (A) German silver and gold (p) Elements jewellery (B) Antimony and Bismuth (q) Isomorphs (C) ZnSO₄.7H₂O and (r) Polymorphs FeSO₄.7H₂O (D) Zinc blende and (s) Mixtures
70.	8 g of O_2 has the same number of molecules as (a) 7 g CO (b) 14 g N ₂ (c) 11 g CO ₂ (d) 16 g SO ₂ A vessel contains 4.4 g of CO ₂ . It means that it contains (a) 0.1 mol of CO ₂ (b) 6.02×10^{22} molecules of CO ₂ (c) 8.8 g atoms of oxygen (d) 1120 mL of CO ₂ at S.T.P. 1 g Mg was burnt in a closed vessel containing 2g oxygen. Which of the following are not correct? (a) 0.25 g of Mg will be left unburnt (b) 1.33 of O ₂ will be left unreacted (c) 2.5 g of MgO will be formed (d) The mixture at the end will weigh 3 g.	 (c) 7.6 mL (d) 8.6 mL <u>Matching Type Questions</u> Match the entries of column I with appropriate entries of column II and choose the correct option out of the four options (a), (b), (c), (d) given at the end of each question. 79. Column I Column II (A) German silver and gold (p) Elements jewellery (B) Antimony and Bismuth (q) Isomorphs (C) ZnSO₄.7H₂O and (r) Polymorphs FeSO₄.7H₂O (D) Zinc blende and (s) Mixtures Wurtzite
70.	8 g of O_2 has the same number of molecules as (a) 7 g CO (b) 14 g N ₂ (c) 11 g CO ₂ (d) 16 g SO ₂ A vessel contains 4.4 g of CO ₂ . It means that it contains (a) 0.1 mol of CO ₂ (b) 6.02×10^{22} molecules of CO ₂ (c) 8.8 g atoms of oxygen (d) 1120 mL of CO ₂ at S.T.P. 1 g Mg was burnt in a closed vessel containing 2g oxygen. Which of the following are not correct? (a) 0.25 g of Mg will be left unburnt (b) 1.33 of O ₂ will be left unreacted (c) 2.5 g of MgO will be formed (d) The mixture at the end will weigh 3 g. Which of the following methods of expressing	 (c) 7.6 mL (d) 8.6 mL <u>Matching Type Questions</u> Match the entries of column I with appropriate entries of column II and choose the correct option out of the four options (a), (b), (c), (d) given at the end of each question. 79. Column I Column II (A) German silver and gold (p) Elements jewellery (B) Antimony and Bismuth (q) Isomorphs (C) ZnSO₄.7H₂O and (r) Polymorphs FeSO₄.7H₂O (D) Zinc blende and (s) Mixtures Wurtzite (E) Graphite and Diamond (t) Metalloids
70.	8 g of O_2 has the same number of molecules as (a) 7 g CO (b) 14 g N ₂ (c) 11 g CO ₂ (d) 16 g SO ₂ A vessel contains 4.4 g of CO ₂ . It means that it contains (a) 0.1 mol of CO ₂ (b) 6.02×10^{22} molecules of CO ₂ (c) 8.8 g atoms of oxygen (d) 1120 mL of CO ₂ at S.T.P. 1 g Mg was burnt in a closed vessel containing 2g oxygen. Which of the following are not correct? (a) 0.25 g of Mg will be left unburnt (b) 1.33 of O ₂ will be left unreacted (c) 2.5 g of MgO will be formed (d) The mixture at the end will weigh 3 g. Which of the following methods of expressing concentration are independent of temperature?	 (c) 7.6 mL (d) 8.6 mL <u>Matching Type Questions</u> Match the entries of column I with appropriate entries of column II and choose the correct option out of the four options (a), (b), (c), (d) given at the end of each question. 79. Column I Column II (A) German silver and gold (p) Elements jewellery (B) Antimony and Bismuth (q) Isomorphs (C) ZnSO₄.7H₂O and (r) Polymorphs FeSO₄.7H₂O (D) Zinc blende and (s) Mixtures Wurtzite (E) Graphite and Diamond (t) Metalloids (a) A-p, B-r, C-t, D-q, E-s (b) A-s, B-t, C-q, D-r, E-p
70.	8 g of O_2 has the same number of molecules as (a) 7 g CO (b) 14 g N ₂ (c) 11 g CO ₂ (d) 16 g SO ₂ A vessel contains 4.4 g of CO ₂ . It means that it contains (a) 0.1 mol of CO ₂ (b) 6.02×10^{22} molecules of CO ₂ (c) 8.8 g atoms of oxygen (d) 1120 mL of CO ₂ at S.T.P. 1 g Mg was burnt in a closed vessel containing 2g oxygen. Which of the following are not correct? (a) 0.25 g of Mg will be left unburnt (b) 1.33 of O ₂ will be left unreacted (c) 2.5 g of MgO will be formed (d) The mixture at the end will weigh 3 g. Which of the following methods of expressing concentration are independent of temperature? (a) Molarity (b) Molality	 (c) 7.6 mL (d) 8.6 mL <u>Matching Type Questions</u> Match the entries of column I with appropriate entries of column II and choose the correct option out of the four options (a), (b), (c), (d) given at the end of each question. 79. Column I Column II (A) German silver and gold (p) Elements jewellery (B) Antimony and Bismuth (q) Isomorphs (C) ZnSO₄.7H₂O and (r) Polymorphs FeSO₄.7H₂O (D) Zinc blende and (s) Mixtures Wurtzite (E) Graphite and Diamond (t) Metalloids (a) A-p, B-r, C-t, D-q, E-s (b) A-s, B-t, C-q, D-r, E-p (c) A-q, B-r, C-p, D-t, E-s (d) A-t, B-s, C-r, D-q, E-p
70.	8 g of O_2 has the same number of molecules as (a) 7 g CO (b) 14 g N ₂ (c) 11 g CO ₂ (d) 16 g SO ₂ A vessel contains 4.4 g of CO ₂ . It means that it contains (a) 0.1 mol of CO ₂ (b) 6.02×10^{22} molecules of CO ₂ (c) 8.8 g atoms of oxygen (d) 1120 mL of CO ₂ at S.T.P. 1 g Mg was burnt in a closed vessel containing 2g oxygen. Which of the following are not correct? (a) 0.25 g of Mg will be left unburnt (b) 1.33 of O ₂ will be left unreacted (c) 2.5 g of MgO will be formed (d) The mixture at the end will weigh 3 g. Which of the following methods of expressing concentration are independent of temperature? (a) Molarity (b) Molality (c) Normality (d) Mole fraction	 (c) 7.6 mL (d) 8.6 mL <u>Matching Type Questions</u> Match the entries of column I with appropriate entries of column II and choose the correct option out of the four options (a), (b), (c), (d) given at the end of each question. 79. Column I Column II (A) German silver and gold (p) Elements jewellery (B) Antimony and Bismuth (q) Isomorphs (C) ZnSO₄.7H₂O and (r) Polymorphs FeSO₄.7H₂O (D) Zinc blende and (s) Mixtures Wurtzite (E) Graphite and Diamond (t) Metalloids (a) A-p, B-r, C-t, D-q, E-s (b) A-s, B-t, C-q, D-r, E-p (c) A-q, B-r, C-p, D-t, E-s (d) A-t, B-s, C-r, D-q, E-p 80. Column I
70.	8 g of O_2 has the same number of molecules as (a) 7 g CO (b) 14 g N ₂ (c) 11 g CO ₂ (d) 16 g SO ₂ A vessel contains 4.4 g of CO ₂ . It means that it contains (a) 0.1 mol of CO ₂ (b) 6.02×10^{22} molecules of CO ₂ (c) 8.8 g atoms of oxygen (d) 1120 mL of CO ₂ at S.T.P. 1 g Mg was burnt in a closed vessel containing 2g oxygen. Which of the following are not correct? (a) 0.25 g of Mg will be left unburnt (b) 1.33 of O ₂ will be left unreacted (c) 2.5 g of MgO will be formed (d) The mixture at the end will weigh 3 g. Which of the following methods of expressing concentration are independent of temperature? (a) Molarity (b) Molality (c) Normality (d) Mole fraction <u>COMPREHENSION</u>	 (c) 7.6 mL (d) 8.6 mL <u>Matching Type Questions</u> Match the entries of column I with appropriate entries of column II and choose the correct option out of the four options (a), (b), (c), (d) given at the end of each question. 79. Column I (A) German silver and gold (p) Elements jewellery (B) Antimony and Bismuth (q) Isomorphs (C) ZnSO₄.7H₂O and (r) Polymorphs FeSO₄.7H₂O (D) Zinc blende and (s) Mixtures Wurtzite (E) Graphite and Diamond (t) Metalloids (a) A-p, B-r, C-t, D-q, E-s (b) A-s, B-t, C-q, D-r, E-p (c) A-q, B-r, C-p, D-t, E-s (d) A-t, B-s, C-r, D-q, E-p 80. Column I (A) femto (P) 10⁹
70. 71. 72.	8 g of O_2 has the same number of molecules as (a) 7 g CO (b) 14 g N ₂ (c) 11 g CO ₂ (d) 16 g SO ₂ A vessel contains 4.4 g of CO ₂ . It means that it contains (a) 0.1 mol of CO ₂ (b) 6.02×10^{22} molecules of CO ₂ (c) 8.8 g atoms of oxygen (d) 1120 mL of CO ₂ at S.T.P. 1 g Mg was burnt in a closed vessel containing 2g oxygen. Which of the following are not correct? (a) 0.25 g of Mg will be left unburnt (b) 1.33 of O ₂ will be left unreacted (c) 2.5 g of MgO will be formed (d) The mixture at the end will weigh 3 g. Which of the following methods of expressing concentration are independent of temperature? (a) Molarity (b) Molality (c) Normality (d) Mole fraction <u>COMPREHENSION</u> Based on the given Passage/Comprehension	 (c) 7.6 mL (d) 8.6 mL <u>Matching Type Questions</u> Match the entries of column I with appropriate entries of column II and choose the correct option out of the four options (a), (b), (c), (d) given at the end of each question. 79. Column I (A) German silver and gold (p) Elements jewellery (B) Antimony and Bismuth (q) Isomorphs (C) ZnSO₄.7H₂O and (r) Polymorphs FeSO₄.7H₂O (D) Zinc blende and (s) Mixtures Wurtzite (E) Graphite and Diamond (t) Metalloids (a) A-p, B-r, C-t, D-q, E-s (b) A-s, B-t, C-q, D-r, E-p (c) A-q, B-r, C-p, D-t, E-s (d) A-t, B-s, C-r, D-q, E-p 80. Column I (A) femto (p) 10⁹ (B) yotta (q) 10⁻¹⁵
70. 71. 72.	8 g of O_2 has the same number of molecules as (a) 7 g CO (b) 14 g N ₂ (c) 11 g CO ₂ (d) 16 g SO ₂ A vessel contains 4.4 g of CO ₂ . It means that it contains (a) 0.1 mol of CO ₂ (b) 6.02×10^{22} molecules of CO ₂ (c) 8.8 g atoms of oxygen (d) 1120 mL of CO ₂ at S.T.P. 1 g Mg was burnt in a closed vessel containing 2g oxygen. Which of the following are not correct? (a) 0.25 g of Mg will be left unburnt (b) 1.33 of O ₂ will be left unreacted (c) 2.5 g of MgO will be formed (d) The mixture at the end will weigh 3 g. Which of the following methods of expressing concentration are independent of temperature? (a) Molarity (b) Molality (c) Normality (d) Mole fraction <u>COMPREHENSION</u> Based on the given Passage/Comprehension e comprehension given below is followed by some	 (c) 7.6 mL (d) 8.6 mL <u>Matching Type Questions</u> Match the entries of column I with appropriate entries of column II and choose the correct option out of the four options (a), (b), (c), (d) given at the end of each question. 79. Column I (A) German silver and gold (p) Elements jewellery (B) Antimony and Bismuth (q) Isomorphs (C) ZnSO₄.7H₂O and (r) Polymorphs FeSO₄.7H₂O (D) Zinc blende and (s) Mixtures Wurtzite (E) Graphite and Diamond (t) Metalloids (a) A-p, B-r, C-t, D-q, E-s (b) A-s, B-t, C-q, D-r, E-p (c) A-q, B-r, C-p, D-t, E-s (d) A-t, B-s, C-r, D-q, E-p 80. Column I (A) femto (p) 10⁹ (B) yotta (q) 10⁻¹⁵ (C) giga (r) 10⁻¹⁸
70. 71. 72. The mu	8 g of O_2 has the same number of molecules as (a) 7 g CO (b) 14 g N ₂ (c) 11 g CO ₂ (d) 16 g SO ₂ A vessel contains 4.4 g of CO ₂ . It means that it contains (a) 0.1 mol of CO ₂ (b) 6.02×10^{22} molecules of CO ₂ (c) 8.8 g atoms of oxygen (d) 1120 mL of CO ₂ at S.T.P. 1 g Mg was burnt in a closed vessel containing 2g oxygen. Which of the following are not correct? (a) 0.25 g of Mg will be left unburnt (b) 1.33 of O ₂ will be left unreacted (c) 2.5 g of MgO will be formed (d) The mixture at the end will weigh 3 g. Which of the following methods of expressing concentration are independent of temperature? (a) Molarity (b) Molality (c) Normality (d) Mole fraction <u>COMPREHENSION</u> Based on the given Passage/Comprehension e comprehension given below is followed by some ltiple choice questions. Each question has one	 (c) 7.6 mL (d) 8.6 mL <u>Matching Type Questions</u> Match the entries of column I with appropriate entries of column II and choose the correct option out of the four options (a), (b), (c), (d) given at the end of each question. 79. Column I (A) German silver and gold (p) Elements jewellery (B) Antimony and Bismuth (q) Isomorphs (C) ZnSO₄.7H₂O and (r) Polymorphs FeSO₄.7H₂O (D) Zinc blende and (s) Mixtures Wurtzite (E) Graphite and Diamond (t) Metalloids (a) A-p, B-r, C-t, D-q, E-s (b) A-s, B-t, C-q, D-r, E-p (c) A-q, B-r, C-p, D-t, E-s (d) A-t, B-s, C-r, D-q, E-p 80. Column I (A) femto (p) 10⁹ (B) yotta (q) 10⁻¹⁵ (C) giga (r) 10⁻¹⁸ (D) atto (s) 10²⁴
70. 71. 72. The mu	8 g of O_2 has the same number of molecules as (a) 7 g CO (b) 14 g N ₂ (c) 11 g CO ₂ (d) 16 g SO ₂ A vessel contains 4.4 g of CO ₂ . It means that it contains (a) 0.1 mol of CO ₂ (b) 6.02×10^{22} molecules of CO ₂ (c) 8.8 g atoms of oxygen (d) 1120 mL of CO ₂ at S.T.P. 1 g Mg was burnt in a closed vessel containing 2g oxygen. Which of the following are not correct? (a) 0.25 g of Mg will be left unburnt (b) 1.33 of O ₂ will be left unreacted (c) 2.5 g of MgO will be formed (d) The mixture at the end will weigh 3 g. Which of the following methods of expressing concentration are independent of temperature? (a) Molarity (b) Molality (c) Normality (d) Mole fraction <u>COMPREHENSION</u> Based on the given Passage/Comprehension e comprehension given below is followed by some ltiple choice questions. Each question has one rect option. Choose the correct option.	 (c) 7.6 mL (d) 8.6 mL <u>Matching Type Questions</u> Match the entries of column I with appropriate entries of column II and choose the correct option out of the four options (a), (b), (c), (d) given at the end of each question. 79. Column I (A) German silver and gold (p) Elements jewellery (B) Antimony and Bismuth (q) Isomorphs (C) ZnSO₄.7H₂O and (r) Polymorphs FeSO₄.7H₂O (D) Zinc blende and (s) Mixtures Wurtzite (E) Graphite and Diamond (t) Metalloids (a) A-p, B-r, C-t, D-q, E-s (b) A-s, B-t, C-q, D-r, E-p (c) A-q, B-r, C-p, D-t, E-s (d) A-t, B-s, C-r, D-q, E-p 80. Column I (A) femto (p) 10⁹ (B) yotta (q) 10⁻¹⁵ (C) giga (r) 10⁻¹⁸ (D) atto (s) 10²⁴ (a) A-q, B-p, C-r, D-s (b) A-s, B-q, C-p, D-r
70. 71. 72. The mu cor Ear	8 g of O_2 has the same number of molecules as (a) 7 g CO (b) 14 g N ₂ (c) 11 g CO ₂ (d) 16 g SO ₂ A vessel contains 4.4 g of CO ₂ . It means that it contains (a) 0.1 mol of CO ₂ (b) 6.02×10^{22} molecules of CO ₂ (c) 8.8 g atoms of oxygen (d) 1120 mL of CO ₂ at S.T.P. 1 g Mg was burnt in a closed vessel containing 2g oxygen. Which of the following are not correct? (a) 0.25 g of Mg will be left unburnt (b) 1.33 of O ₂ will be left unreacted (c) 2.5 g of MgO will be formed (d) The mixture at the end will weigh 3 g. Which of the following methods of expressing concentration are independent of temperature? (a) Molarity (b) Molality (c) Normality (d) Mole fraction <u>COMPREHENSION</u> <u>Based on the given Passage/Comprehension</u> e comprehension given below is followed by some ltiple choice questions. Each question has one rect option. Choose the correct option. lier the concept of equivalent weights was very common	 (c) 7.6 mL (d) 8.6 mL <u>Matching Type Questions</u> Match the entries of column I with appropriate entries of column II and choose the correct option out of the four options (a), (b), (c), (d) given at the end of each question. 79. Column I (A) German silver and gold (p) Elements jewellery (B) Antimony and Bismuth (q) Isomorphs (C) ZnSO₄.7H₂O and (r) Polymorphs FeSO₄.7H₂O (D) Zinc blende and (s) Mixtures Wurtzite (E) Graphite and Diamond (t) Metalloids (a) A-p, B-r, C-t, D-q, E-s (b) A-s, B-t, C-q, D-r, E-p (c) A-q, B-r, C-p, D-t, E-s (d) A-t, B-s, C-r, D-q, E-p 80. Column I (A) femto (p) 10⁹ (B) yotta (q) 10⁻¹⁵ (C) giga (r) 10⁻¹⁸ (D) atto (s) 10²⁴ (a) A-q, B-p, C-r, D-s (b) A-s, B-q, C-p, D-r (c) A-q, B-s, C-p, D-r (d) A-r, B-s, C-p, D-q
70. 71. 72. The mu cor Ear and	8 g of O_2 has the same number of molecules as (a) 7 g CO (b) 14 g N ₂ (c) 11 g CO ₂ (d) 16 g SO ₂ A vessel contains 4.4 g of CO ₂ . It means that it contains (a) 0.1 mol of CO ₂ (b) 6.02×10^{22} molecules of CO ₂ (c) 8.8 g atoms of oxygen (d) 1120 mL of CO ₂ at S.T.P. 1 g Mg was burnt in a closed vessel containing 2g oxygen. Which of the following are not correct? (a) 0.25 g of Mg will be left unburnt (b) 1.33 of O ₂ will be left unreacted (c) 2.5 g of MgO will be formed (d) The mixture at the end will weigh 3 g. Which of the following methods of expressing concentration are independent of temperature? (a) Molarity (b) Molality (c) Normality (d) Mole fraction <u>COMPREHENSION</u> <u>Based on the given Passage/Comprehension</u> e comprehension given below is followed by some Itiple choice questions. Each question has one rect option. Choose the correct option. lier the concept of equivalent weights was very common the concentrations of the solutions were expressed in	 (c) 7.6 mL (d) 8.6 mL Matching Type Questions Match the entries of column I with appropriate entries of column II and choose the correct option out of the four options (a), (b), (c), (d) given at the end of each question. 79. Column I (A) German silver and gold (p) Elements jewellery (B) Antimony and Bismuth (q) Isomorphs (C) ZnSO₄.7H₂O and (r) Polymorphs FeSO₄.7H₂O (D) Zinc blende and (s) Mixtures Wurtzite (E) Graphite and Diamond (t) Metalloids (a) A-p, B-r, C-t, D-q, E-s (b) A-s, B-t, C-q, D-r, E-p (c) A-q, B-r, C-p, D-t, E-s (d) A-t, B-s, C-r, D-q, E-p 80. Column I (A) femto (p) 10⁹ (B) yotta (q) 10⁻¹⁵ (C) giga (r) 10⁻¹⁸ (D) atto (s) 10²⁴ (a) A-q, B-p, C-r, D-s (b) A-s, B-q, C-p, D-r (c) A-q, B-s, C-p, D-r (d) A-r, B-s, C-p, D-q Matrix-Match Type Questions
70. 71. 72. The mu cor Ear and tern	8 g of O_2 has the same number of molecules as (a) 7 g CO (b) 14 g N ₂ (c) 11 g CO ₂ (d) 16 g SO ₂ A vessel contains 4.4 g of CO ₂ . It means that it contains (a) 0.1 mol of CO ₂ (b) 6.02×10^{22} molecules of CO ₂ (c) 8.8 g atoms of oxygen (d) 1120 mL of CO ₂ at S.T.P. 1 g Mg was burnt in a closed vessel containing 2g oxygen. Which of the following are not correct? (a) 0.25 g of Mg will be left unburnt (b) 1.33 of O ₂ will be left unreacted (c) 2.5 g of MgO will be formed (d) The mixture at the end will weigh 3 g. Which of the following methods of expressing concentration are independent of temperature? (a) Molarity (b) Molality (c) Normality (d) Mole fraction <u>COMPREHENSION</u> <u>Based on the given Passage/Comprehension</u> e comprehension given below is followed by some Itiple choice questions. Each question has one rect option. Choose the correct option. lier the concept of equivalent weights was very common the concentrations of the solutions were expressed in ms of normalities. The convenience was that the	 (c) 7.6 mL (d) 8.6 mL <u>Matching Type Questions</u> Match the entries of column I with appropriate entries of column II and choose the correct option out of the four options (a), (b), (c), (d) given at the end of each question. 79. Column I 79. Column I (A) German silver and gold (p) Elements jewellery (B) Antimony and Bismuth (q) Isomorphs (C) ZnSO₄.7H₂O and (r) Polymorphs FeSO₄.7H₂O (D) Zinc blende and (s) Mixtures Wurtzite (E) Graphite and Diamond (t) Metalloids (a) A-p, B-r, C-t, D-q, E-s (b) A-s, B-t, C-q, D-r, E-p (c) A-q, B-r, C-p, D-t, E-s (d) A-t, B-s, C-r, D-q, E-p 80. Column I (A) femto (p) 10⁹ (B) yotta (q) 10⁻¹⁵ (C) giga (r) 10⁻¹⁸ (D) atto (s) 10²⁴ (a) A-q, B-p, C-r, D-s (b) A-s, B-q, C-p, D-r (c) A-q, B-s, C-p, D-r (d) A-r, B-s, C-p, D-q Matrix-Match Type Questions
70. 71. 72. The mu cor Ear and tern	8 g of O_2 has the same number of molecules as (a) 7 g CO (b) 14 g N ₂ (c) 11 g CO ₂ (d) 16 g SO ₂ A vessel contains 4.4 g of CO ₂ . It means that it contains (a) 0.1 mol of CO ₂ (b) 6.02×10^{22} molecules of CO ₂ (c) 8.8 g atoms of oxygen (d) 1120 mL of CO ₂ at S.T.P. 1 g Mg was burnt in a closed vessel containing 2g oxygen. Which of the following are not correct? (a) 0.25 g of Mg will be left unburnt (b) 1.33 of O ₂ will be left unreacted (c) 2.5 g of MgO will be formed (d) The mixture at the end will weigh 3 g. Which of the following methods of expressing concentration are independent of temperature? (a) Molarity (b) Molality (c) Normality (d) Mole fraction <u>COMPREHENSION</u> <u>Based on the given Passage/Comprehension</u> e comprehension given below is followed by some Itiple choice questions. Each question has one rect option. Choose the correct option. lier the concept of equivalent weights was very common the concentrations of the solutions were expressed in	 (c) 7.6 mL (d) 8.6 mL <u>Matching Type Questions</u> Match the entries of column I with appropriate entries of column II and choose the correct option out of the four options (a), (b), (c), (d) given at the end of each question. 79. Column I 79. Column I (A) German silver and gold (p) Elements jewellery (B) Antimony and Bismuth (q) Isomorphs (C) ZnSO₄.7H₂O and (r) Polymorphs FeSO₄.7H₂O (D) Zinc blende and (s) Mixtures Wurtzite (E) Graphite and Diamond (t) Metalloids (a) A-p, B-r, C-t, D-q, E-s (b) A-s, B-t, C-q, D-r, E-p (c) A-q, B-r, C-p, D-t, E-s (d) A-t, B-s, C-r, D-q, E-p 80. Column I (A) femto (p) 10⁹ (B) yotta (q) 10⁻¹⁵ (C) giga (r) 10⁻¹⁸ (D) atto (s) 10²⁴ (a) A-q, B-p, C-r, D-s (b) A-s, B-q, C-p, D-r (c) A-q, B-s, C-p, D-r (d) A-r, B-s, C-p, D-q Matrix-Match Type Questions
70. 71. 72. The mu cor Ear and tern sub	8 g of O_2 has the same number of molecules as (a) 7 g CO (b) 14 g N ₂ (c) 11 g CO ₂ (d) 16 g SO ₂ A vessel contains 4.4 g of CO ₂ . It means that it contains (a) 0.1 mol of CO ₂ (b) 6.02×10^{22} molecules of CO ₂ (c) 8.8 g atoms of oxygen (d) 1120 mL of CO ₂ at S.T.P. 1 g Mg was burnt in a closed vessel containing 2g oxygen. Which of the following are not correct? (a) 0.25 g of Mg will be left unburnt (b) 1.33 of O ₂ will be left unreacted (c) 2.5 g of MgO will be formed (d) The mixture at the end will weigh 3 g. Which of the following methods of expressing concentration are independent of temperature? (a) Molarity (b) Molality (c) Normality (d) Mole fraction <u>COMPREHENSION</u> <u>Based on the given Passage/Comprehension</u> e comprehension given below is followed by some Itiple choice questions. Each question has one rect option. Choose the correct option. lier the concept of equivalent weights was very common the concentrations of the solutions were expressed in ms of normalities. The convenience was that the	 (c) 7.6 mL (d) 8.6 mL <u>Matching Type Questions</u> Match the entries of column I with appropriate entries of column II and choose the correct option out of the four options (a), (b), (c), (d) given at the end of each question. 79. Column I (A) German silver and gold (p) Elements jewellery (B) Antimony and Bismuth (q) Isomorphs (C) ZnSO₄.7H₂O and (r) Polymorphs FeSO₄.7H₂O (D) Zinc blende and (s) Mixtures Wurtzite (E) Graphite and Diamond (t) Metalloids (a) A-p, B-r, C-t, D-q, E-s (b) A-s, B-t, C-q, D-r, E-p (c) A-q, B-r, C-p, D-t, E-s (d) A-t, B-s, C-r, D-q, E-p 80. Column I (A) femto (p) 10⁹ (B) yotta (q) 10⁻¹⁵ (C) giga (r) 10⁻¹⁸ (D) atto (s) 10²⁴ (a) A-q, B-p, C-r, D-s (b) A-s, B-q, C-p, D-r (c) A-q, B-s, C-p, D-r (d) A-r, B-s, C-p, D-q Matrix-Match Type Questions
70. 71. 72. The mu Ear and terr sub So	8 g of O_2 has the same number of molecules as (a) 7 g CO (b) 14 g N ₂ (c) 11 g CO ₂ (d) 16 g SO ₂ A vessel contains 4.4 g of CO ₂ . It means that it contains (a) 0.1 mol of CO ₂ (b) 6.02×10^{22} molecules of CO ₂ (c) 8.8 g atoms of oxygen (d) 1120 mL of CO ₂ at S.T.P. 1 g Mg was burnt in a closed vessel containing 2g oxygen. Which of the following are not correct? (a) 0.25 g of Mg will be left unburnt (b) 1.33 of O ₂ will be left unreacted (c) 2.5 g of MgO will be formed (d) The mixture at the end will weigh 3 g. Which of the following methods of expressing concentration are independent of temperature? (a) Molarity (b) Molality (c) Normality (d) Mole fraction <u>COMPREHENSION</u> Based on the given Passage/Comprehension e comprehension given below is followed by some Itiple choice questions. Each question has one rect option. Choose the correct option. Hier the concept of equivalent weights was very common 1 the concentrations of the solutions were expressed in ms of normalities. The convenience was that the ostances reacted in the ratio of their gram equivalents.	 (c) 7.6 mL (d) 8.6 mL Matching Type Questions Match the entries of column I with appropriate entries of column II and choose the correct option out of the four options (a), (b), (c), (d) given at the end of each question. 79. Column I Column II (A) German silver and gold (p) Elements jewellery (B) Antimony and Bismuth (q) Isomorphs (C) ZnSO₄.7H₂O and (r) Polymorphs FeSO₄.7H₂O (D) Zinc blende and (s) Mixtures Wurtzite (E) Graphite and Diamond (t) Metalloids (a) A-p, B-r, C-t, D-q, E-s (b) A-s, B-t, C-q, D-r, E-p (c) A-q, B-r, C-p, D-t, E-s (d) A-t, B-s, C-r, D-q, E-p 80. Column I Column II (A) femto (p) 10⁹ (B) yotta (q) 10⁻¹⁵ (C) giga (r) 10⁻¹⁸ (D) atto (s) 10²⁴ (a) A-q, B-p, C-r, D-s (b) A-s, B-q, C-p, D-r (c) A-q, B-s, C-p, D-r (d) A-r, B-s, C-p, D-q Matrix-Match Type Questions Match the entries of column I with appropriate entries of column II. Each entry in column II. If the
70. 71. 72. The mu Ear and tern sub So dete	8 g of O_2 has the same number of molecules as (a) 7 g CO (b) 14 g N ₂ (c) 11 g CO ₂ (d) 16 g SO ₂ A vessel contains 4.4 g of CO ₂ . It means that it contains (a) 0.1 mol of CO ₂ (b) 6.02×10^{22} molecules of CO ₂ (c) 8.8 g atoms of oxygen (d) 1120 mL of CO ₂ at S.T.P. 1 g Mg was burnt in a closed vessel containing 2g oxygen. Which of the following are not correct? (a) 0.25 g of Mg will be left unburnt (b) 1.33 of O ₂ will be left unreacted (c) 2.5 g of MgO will be formed (d) The mixture at the end will weigh 3 g. Which of the following methods of expressing concentration are independent of temperature? (a) Molarity (b) Molality (c) Normality (d) Mole fraction <u>COMPREHENSION</u> Based on the given Passage/Comprehension e comprehension given below is followed by some ltiple choice questions. Each question has one rect option. Choose the correct option. lier the concept of equivalent weights was very common 1 the concentrations of the solutions were expressed in ms of normalities. The convenience was that the ostances reacted in the ratio of their gram equivalents. there was no need to write balanced equation to ermine the amounts of the substances reacted. However,	 (c) 7.6 mL (d) 8.6 mL <u>Matching Type Questions</u> Match the entries of column I with appropriate entries of column II and choose the correct option out of the four options (a), (b), (c), (d) given at the end of each question. 79. Column I Column II (A) German silver and gold (p) Elements jewellery (B) Antimony and Bismuth (q) Isomorphs (C) ZnSO₄.7H₂O and (r) Polymorphs FeSO₄.7H₂O (D) Zinc blende and (s) Mixtures Wurtzite (E) Graphite and Diamond (t) Metalloids (a) A-p, B-r, C-t, D-q, E-s (b) A-s, B-t, C-q, D-r, E-p (c) A-q, B-r, C-p, D-t, E-s (d) A-t, B-s, C-r, D-q, E-p 80. Column I (A) femto (p) 10⁹ (B) yotta (q) 10⁻¹⁵ (C) giga (r) 10⁻¹⁸ (D) atto (s) 10²⁴ (a) A-q, B-p, C-r, D-s (b) A-s, B-q, C-p, D-r (c) A-q, B-s, C-p, D-r (d) A-r, B-s, C-p, D-q Matrix-Match Type Questions Match the entries of column I with appropriate entries of column II. If the correct matches are A-p, s; B-r; C-p, q; D-s, then the
70. 71. 72. The mu cor Ear and terr sub So dete	8 g of O_2 has the same number of molecules as (a) 7 g CO (b) 14 g N ₂ (c) 11 g CO ₂ (d) 16 g SO ₂ A vessel contains 4.4 g of CO ₂ . It means that it contains (a) 0.1 mol of CO ₂ (b) 6.02×10^{22} molecules of CO ₂ (c) 8.8 g atoms of oxygen (d) 1120 mL of CO ₂ at S.T.P. 1 g Mg was burnt in a closed vessel containing 2g oxygen. Which of the following are not correct? (a) 0.25 g of Mg will be left unburnt (b) 1.33 of O ₂ will be left unreacted (c) 2.5 g of MgO will be formed (d) The mixture at the end will weigh 3 g. Which of the following methods of expressing concentration are independent of temperature? (a) Molarity (b) Molality (c) Normality (d) Mole fraction <u>COMPREHENSION</u> Based on the given Passage/Comprehension e comprehension given below is followed by some ltiple choice questions. Each question has one rect option. Choose the correct option. lier the concept of equivalent weights was very common 1 the concentrations of the solutions were expressed in ms of normalities. The convenience was that the ostances reacted in the ratio of their gram equivalents. there was no need to write balanced equation to ermine the amounts of the substances reacted. However, ermination of equivalent weights posed difficulty in	 (c) 7.6 mL (d) 8.6 mL Matching Type Questions Match the entries of column I with appropriate entries of column II and choose the correct option out of the four options (a), (b), (c), (d) given at the end of each question. 79. Column I (A) German silver and gold (p) Elements jewellery (B) Antimony and Bismuth (q) Isomorphs (C) ZnSO₄.7H₂O and (r) Polymorphs FeSO₄.7H₂O (D) Zinc blende and (s) Mixtures Wurtzite (E) Graphite and Diamond (t) Metalloids (a) A-p, B-r, C-t, D-q, E-s (b) A-s, B-t, C-q, D-r, E-p (c) A-q, B-r, C-p, D-t, E-s (d) A-t, B-s, C-r, D-q, E-p 80. Column I (A) femto (p) 10⁹ (B) yotta (q) 10⁻¹⁵ (C) giga (r) 10⁻¹⁸ (D) atto (s) 10²⁴ (a) A-q, B-p, C-r, D-s (b) A-s, B-q, C-p, D-r (c) A-q, B-s, C-p, D-r (d) A-r, B-s, C-p, D-q Matrix-Match Type Questions Match the entries of column I with appropriate entries of column II. If the
70. 71. 72. The mu cor Ear and terr sub So dete	8 g of O_2 has the same number of molecules as (a) 7 g CO (b) 14 g N ₂ (c) 11 g CO ₂ (d) 16 g SO ₂ A vessel contains 4.4 g of CO ₂ . It means that it contains (a) 0.1 mol of CO ₂ (b) 6.02×10^{22} molecules of CO ₂ (c) 8.8 g atoms of oxygen (d) 1120 mL of CO ₂ at S.T.P. 1 g Mg was burnt in a closed vessel containing 2g oxygen. Which of the following are not correct? (a) 0.25 g of Mg will be left unburnt (b) 1.33 of O ₂ will be left unreacted (c) 2.5 g of MgO will be formed (d) The mixture at the end will weigh 3 g. Which of the following methods of expressing concentration are independent of temperature? (a) Molarity (b) Molality (c) Normality (d) Mole fraction <u>COMPREHENSION</u> Based on the given Passage/Comprehension to comprehension given below is followed by some Itiple choice questions. Each question has one rect option. Choose the correct option. lier the concept of equivalent weights was very common 1 the concentrations of the solutions were expressed in ms of normalities. The convenience was that the ostances reacted in the ratio of their gram equivalents. there was no need to write balanced equation to ermine the amounts of the substances reacted. However, ermination of equivalent weights posed difficulty in tain cases. Moreover, the equivalent weight of the same	 (c) 7.6 mL (d) 8.6 mL <u>Matching Type Questions</u> Match the entries of column I with appropriate entries of column II and choose the correct option out of the four options (a), (b), (c), (d) given at the end of each question. 79. Column I Column II (A) German silver and gold (p) Elements jewellery (B) Antimony and Bismuth (q) Isomorphs (C) ZnSO₄.7H₂O and (r) Polymorphs FeSO₄.7H₂O (D) Zinc blende and (s) Mixtures Wurtzite (E) Graphite and Diamond (t) Metalloids (a) A-p, B-r, C-t, D-q, E-s (b) A-s, B-t, C-q, D-r, E-p (c) A-q, B-r, C-p, D-t, E-s (d) A-t, B-s, C-r, D-q, E-p 80. Column I (A) femto (p) 10⁹ (B) yotta (q) 10⁻¹⁵ (C) giga (r) 10⁻¹⁸ (D) atto (s) 10²⁴ (a) A-q, B-p, C-r, D-s (b) A-s, B-q, C-p, D-r (c) A-q, B-s, C-p, D-r (d) A-r, B-s, C-p, D-q Matrix-Match Type Questions Match the entries of column I with appropriate entries of column II. If the correct matches are A-p, s; B-r; C-p, q; D-s, then the
70. 71. 72. The mu Ear and terr sub So dete	8 g of O_2 has the same number of molecules as (a) 7 g CO (b) 14 g N ₂ (c) 11 g CO ₂ (d) 16 g SO ₂ A vessel contains 4.4 g of CO ₂ . It means that it contains (a) 0.1 mol of CO ₂ (b) 6.02×10^{22} molecules of CO ₂ (c) 8.8 g atoms of oxygen (d) 1120 mL of CO ₂ at S.T.P. 1 g Mg was burnt in a closed vessel containing 2g oxygen. Which of the following are not correct? (a) 0.25 g of Mg will be left unburnt (b) 1.33 of O ₂ will be left unreacted (c) 2.5 g of MgO will be formed (d) The mixture at the end will weigh 3 g. Which of the following methods of expressing concentration are independent of temperature? (a) Molarity (b) Molality (c) Normality (d) Mole fraction <u>COMPREHENSION</u> Based on the given Passage/Comprehension e comprehension given below is followed by some ltiple choice questions. Each question has one rect option. Choose the correct option. lier the concept of equivalent weights was very common 1 the concentrations of the solutions were expressed in ms of normalities. The convenience was that the ostances reacted in the ratio of their gram equivalents. there was no need to write balanced equation to ermine the amounts of the substances reacted. However, ermination of equivalent weights posed difficulty in	 (c) 7.6 mL (d) 8.6 mL <u>Matching Type Questions</u> Match the entries of column I with appropriate entries of column II and choose the correct option out of the four options (a), (b), (c), (d) given at the end of each question. 79. Column I Column II (A) German silver and gold (p) Elements jewellery (B) Antimony and Bismuth (q) Isomorphs (C) ZnSO₄.7H₂O and (r) Polymorphs FeSO₄.7H₂O (D) Zinc blende and (s) Mixtures Wurtzite (E) Graphite and Diamond (t) Metalloids (a) A-p, B-r, C-t, D-q, E-s (b) A-s, B-t, C-q, D-r, E-p (c) A-q, B-r, C-p, D-t, E-s (d) A-t, B-s, C-r, D-q, E-p 80. Column I (A) femto (p) 10⁹ (B) yotta (q) 10⁻¹⁵ (C) giga (r) 10⁻¹⁸ (D) atto (s) 10²⁴ (a) A-q, B-p, C-r, D-s (b) A-s, B-q, C-p, D-r (c) A-q, B-s, C-p, D-r (d) A-r, B-s, C-p, D-q Matrix-Match Type Questions Match the entries of column I with appropriate entries of column II. If the correct matches are A-p, s; B-r; C-p, q; D-s, then the

í			
2	OUF NO A	ADDRESS :2/2-B. Kasturba Gandhi Marg. Near Mayohall Crossing, Kutchery Road, Prayagraj	
N	CHEMICA_	ADDRESS: 2/2-B. Kasturba Gandhi Marg. Near Mavohall Crossing. Kutcherv Road. Pravagrai	- rai
			141
	POINT	Mob.: 9839206708, 9984889076	

DIRECTION. The answer to each of the following questions is a single digit integer, ranging from 0 to 9. If the correct answers to the question numbers A, B, C and D (say) are 4, 0, 9 and 2 respectively, then the correct darkening of bubbles should be as shown on the side:

- 83. The number of metalloids present in the following elements is tin, lead, arsenic, palladium, antimony, tungsten, bismuth, osmium, lanthanum
- 84. A temperature of 41°F when expressed in terms of degress centigrade will be
- 85. The prefix 'giga' represents 10^x where x is

2022/

- 86. The number of significant figures in the value 0.000524000 is
- 87. Copper reacts with nitric acid to form copper (II) nitrate, nitric oxide and water. The number of nitric acid molecules in the balanced equation is
- 88. Silver (atomic weight = 108 g mol⁻¹) has a density of 10.5 g cm⁻³. The number of silver atoms on a surface of

area 10⁻¹² m² can be expressed in scientific notation as

 $y \times 10^x$. The value of x is:

89. Among the following, the number of elements showing only one non-zero oxidation sate is

O, Cl, F, N, P, Sn, Tl, Na, Ti

- 90. The value of n in the molecular form $\text{Be}_n\text{Al}_2\text{Si}_6\text{O}_{18}$ is
- 91. A student performs a titration with different burettes and finds titre values of 25.2 mL, 25.25 mL, and 25.0 mL. The number of significant figures in the average titre value is
- 92. Reaction of Br_2 with Na_2CO_3 in aqueous solution gives sodium bromide and sodium bromate with evolution of CO₂ gas. The number of sodium bromide molecules involved in the balanced chemical equation is
- 93. If the value of Avogadro's number is $6.023 \times 10^{23} \text{ mol}^{-1}$ and the value of Boltzmann constant is 1.380×10^{-23} JK⁻¹, then the number of significant figures in the calculated value of the universal gas constant is
- 94. Three moles of B_2H_6 are completely reacted with methanol. The number of moles of boron containing product formed is

Numerical Value Type Questions (In Decimal Notation)

For the following question, enter the correct numerical value, (in decimal-notation, truncated/ rounded-off to the second decimal place, e.g., 6.25, 7.00, -0.33, 30.27, -127.30) using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.

95. The ammonia prepared by treating ammonium sulphate with calcium hydroxide is completely used by NiCl₂.6H₂O to form a stable coordination compound. Assume that both the reactions are 100% complete. If 1584 g of ammonium sulphate and 952 g of NiCl_a.6H_aO are used in the preparation, the combined weight (in grams) of gypsum and the nickel-ammonia coordination compound thus produced is (Atomic weights in g mol⁻¹ H = 1, N = 14, O = 16, S = 32, Cl = 35.5, Ca = 40, Ni = 59)

Assertion-Keason <u>TYPE I</u> DIRECTION. The questions given below contain DIRECTION. The questions and STATEMENT-2 (Reason). which ONLY ONE is correct. Choose the correct option as under:

- (a) Statement-1 is True, Statement-2 is True; Statement-2 is the correct explanation for Statement-1.
- Statement-1 is True, Statement-2 is True; Statement-(b)2 is NOT a correct explanation for Statement-1.
- Statement-1 is True, Statement-2 is False. (c)
- (d) Statement-1 is False, Statement-2 is True.
- 96. **Statement-1.** A single C¹² atom has a mass exactly 12 amu and a mole of these atoms has a mass of exactly 12 grams.

Statement-2. A mole of atoms of any element has a mass in grams equal to its atomic mass.

97. Statement-1. In a gaseous reaction, the ratio of volumes of reactants and gaseous prodeucts is in agreement with their molar ratio.

Statement-2. Volume of gas is inversely proportional to its moles at particular temperature and pressure.

CHEMICA	ADDRESS :2/2-B, Kasturba Gandhi Marg, Near Mayohall Crossing, Kutchery Road, Prayagraj	
POINT	Mob.: 9839206708, 9984889076	[5]

c • C f Cl :... n .

98.	Statement-1. The standard unit for expressing the				ANSWER		
	mass of atoms is amu.						
	Statement-2. amu is also called as avogram.	1. (d))	2.(d)	3. (c)	4. (d)	5. (b
99	Statement-1. Under identical conditions, 1 L of O_2 gas	6. (a)		7. (c)	8. (b)	9. (b)	10. (a
	and 1 L of O_3 gas contain the same number of oxygen	11. (a)		12 (d)	13. (c)	14. (e)	15. (d
	-	16. (c)			()		
	atoms.			17. (c)	18. (c)	19. (c)	20. (c
	Statement-2. 1 L of O_2 and 1 L of O_3 contain the same	21. (c)		22. (a)	23. (c)	24. (a)	25. (a
	number of moles under identical conditions.	26. (c)		27. (c)	28. (d)	29. (c)	30. (d
	<u>TYPE II</u>	31. (a))	32. (d)	33. (a)	34. (a)	35. (d
	ECTION. In each of the following questions, a statement	36. (a))	37. (a)	38. (d)	39. (b)	40. (d
of 1	Assertion (A) is given followed by a corresponding	41. (a))	42. (a)	43. (b)	44. (c)	45. (a
tat	ement of Reason (R) just below it. Of the statements,	46. (b))	47. (a)	48. (c)	49. (b)	50. (d
	k the correct answer as	51. (c)		52. (a)	53. (d)	54. (d)	55. (c
a)	If both assertion and reason are ture, and reason is	56. (a)		57. (a)	58. (d)	59. (b)	60. (d
	the true explanation of the assertion.	61. (e)		62. (a)	63. (c)	64. (c)	65. (c
b)	If both assertion and reason are true, but reason is	66. (d)		67. (d)	68. (b)	69. (a, c, c	
,	not the true explanation of the assertion.						
~)	If assertion is true, but reason is false.	71. (a,		72. (b,d)	73. (b)	74. (b)	75. (c
	If both assertion and reason are false.	76. (d)		77. (a)	78. (c)	79. (b)	80. (c
•	Assertion. Phenol is a disinfectant.			; B-q; C-s;			
00				B-p; C-r; D			
	Reason. Disinfectants are used to stop infection of	83. (3))	84. (5)	85. (9)	86. (6)	87. (8
<u>.</u>	the wounds.	88. (7)		89. (2)	90. (3)	91. (3)	92. (5
01	Assertion. Cinnabar is a chemical compound whereas	93. (4)		94. (6)	95. (2992)	96. (a)	97. (c
	brass is a mixture.	98. (b)		99. (d)	100 (c)	101 (a)	102 (b
	Reason. Cinnabar always contains 6.25 times as much	103 (d)		104 (a)	105 (d)	101 (a)	107 (c
	mercury as sulphur by weight. Brass can be made with	108 (c)	57	109 (d)	100 (u)	100 (a)	107 (C
	widely different ratios of copper and zinc.	100 (C)		109 (u)			
02	Assertion. The size of a degree on Fahrenheit scale is			(Cx //			
01	smaller than that on celsius scale.			1.0.1			
					1		
	Reason. When temperature on celsius scale reads 0° ,				//		
~ ~	it reads 32° on Fahrenheit scale.				. 11		
.03	Assertion. The number 14.56 \pm 0.01 has three			stry	. 11		
	significant figures.			5			
	Reason. Number of significant figures is total number			hemis			
	of digits except the last digit whose alue is uncertain.			12	11		
.04	Assertion. Gay Lussac's law does not follow from			10	//		
	Dalton's atomic theory.			1251	1		
	Reason. Dalton's atomic theory explains laws of				/		
	chemical combination by mass only.		/				
		Chal		0'//			
.05	Assertion. Average atomic mass of an element depends	Chall	len	2//			
	mainly on the heavier isotope.	Gilav					
	Reason. Average atomic mass is obtained by multiplyng						
	the atomic mass of the heavier isotope with its						
	fractional abundance.						
.06	Assertion. Both 106 g of sodium carbonate and 12 g of						
	carbon have same number of carbon atoms.						
	Reason. Both contain 1 g atom of carbon which						
	contains 6.023×10^{23} carbon atoms.						
07	Assertion. Equivalent weight of a base						
01							
	= Molecular weight						
	Acidity						
	Reason. Acidity is the number of replaceable hydrogen						
	atoms in one molecule of the base.						
08	Assertion. Equal moles of different substances						
00	contain same number of constituent particles.						
	Reason. Equal weights of different substances contain						
	the same number of constituent particles.						
.09	Assertion. In a combustion reaction in the air, oxygen						
	is the limiting reactant.						
	Reason. Oxygen is present in limited amount (only						
	21%) in the air.						
		Joon Ma	roha11	Croasin - 17-	1tohom Dag 1	Drove	
	ADDRESS :2/2-B, Kasturba Gandhi Marg, N CONT Mob.: 983920				achery Road	<u>, Pravagraj</u>	[[
		min A M	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-				