Instructor: ER. S. K. SINGH (B. Tech, M.Tech) M.N.N.I.T. Alld.

1. Which of the following reaction is possible at anode?
(a) $2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}$
(b) $\mathrm{F}_{2} \rightarrow 2 \mathrm{~F}^{-}$
(c) $(1 / 2) \mathrm{O}_{2}+2 \mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O}$
(d) None of these
2. Emf of a cell in terms of reduction potential of its left and right electrodes is:
(a) $\mathrm{E}=\mathrm{E}_{\text {left }}-\mathrm{E}_{\text {right }}$
(b) $\mathrm{E}=\mathrm{E}_{\text {left }}+\mathrm{E}_{\text {right }}$
(c) $\mathrm{E}=\mathrm{E}_{\text {right }}-\mathrm{E}_{\text {left }}$
(d) $\mathrm{E}=-\left[\mathrm{E}_{\text {right }}+\mathrm{E}_{\text {left }}\right]$
3. Conductance (Siemens, S) is directly prportional to the area of the vessel and the concentration of solution in it and is inversely proportional to the length of the vessel, then the unit of constant of proportionality is
(a) $\mathrm{Sm} \mathrm{mol}^{-1}$
(b) $\mathrm{Sm}^{2} \mathrm{~mol}^{-1}$
(c) $\mathrm{S}^{-1} \mathrm{mlmol}$
(d) $\mathrm{S}^{2} \mathrm{~m}^{2} \mathrm{~mol}^{-2}$

(a) $\frac{\mathrm{RT}}{\mathrm{F}} \log \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}$
(b) $\frac{\mathrm{RT}}{2 \mathrm{~F}} \log _{e} \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}$
(c) $\frac{R T}{F}-\log _{e} \frac{P_{2}}{P_{1}}$
(d) None of these
4. For a cell given below $\mathrm{Ag}\left|\mathrm{Ag}^{+} \| \mathrm{Cu}^{2+}\right| \mathrm{Cu}$
$\mathrm{Ag}^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{Ag} ; \quad \mathrm{E}^{0}=\mathrm{x}$
$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu} ; \quad \mathrm{E}^{0}=\mathrm{y}$
$\mathrm{E}_{\text {cell }}^{0}$ is
(a) $x+2 y$
(b) $2 \mathrm{x}+\mathrm{y}$
(c) $y-x$
(d) $y-2 x$
5. Several blocks of magnesium are fixed to the bottom of a ship to
(a) keep away the sharks
(b) make the ship lighter
(c) prevent puncturing by under sea rocks
(d) prevent action of water and salt
6. In an electrolytic cell, the flow of electrons is from:
(a) cathode to anode in solution
(b) cathode to anode through external supply
(c) cathode to anode through internal supply
(d) anode to cathode through internal supply
7. The $\mathrm{E}_{\mathrm{M}^{3+} / \mathrm{M}^{2+}}^{0}$ values for $\mathrm{Cr}, \mathrm{Mn}, \mathrm{Fe}$ and Co are -0.41, $+1.57,+0.77$ and +1.97 V respectively. For which one of these metals the change in oxidation state from +2 to +3 is easiest?
(a) Co
(b) Mn
(c) Fe
(d) Cr
8. Standard reduction electrode potentials of three metals A, B and C are $+0.5 \mathrm{~V},-3.0 \mathrm{~V}$, and -1.2 V respectively. The reducing power of these metals are:
(a) $\mathrm{B}>\mathrm{C}>\mathrm{A}$
(b) A $>$ B $>$ C
(c) C $>$ B $>$ A
(d) $\mathrm{A}>\mathrm{C}>\mathrm{B}$
9. For a cell reaction involving a two electrons changes, the standard e.m.f. of the cell is found to be 0.295 V at $25^{\circ} \mathrm{C}$. The equilibrium constant of the reaction at $25^{\circ} \mathrm{C}$ will be:
(a) 1×10^{-10}
(b) 29.5×10^{-2}
(c) 10
(d) 1×10^{10}
10. When during electrolysis of a solution of $\mathrm{AgNO}_{3}, 9650$ coulombs of charge pass through the electroplating bath, the mass of silver deposited on the cathode will be:
(a) 1.08 g
(b) 10.08 g
(c) 21.6 g
(d) 108 g
11. For the redox change; $\mathrm{Zn}(\mathrm{s})+\underset{0.1 \mathrm{M}}{\mathrm{Cu}^{2+} \longrightarrow} \mathrm{Zn}_{1 \mathrm{M}}^{2+}+\mathrm{Cu}(\mathrm{s})$, taking place in a cell is 1.10 volt. $\mathrm{E}_{\text {cell }}$ for the cell will be:
(a) 1.07 V
(b) 0.82 V
(c) 2.14 V
(d) 180 V
12. In a hydrogen-oxygen fuel cell, combustion of hydrogen occurs to:
(a) remove adsorbed oxygen from electrode surfaces
(b) create potential difference between the two electrodes
(c) produce high purity water
(d) generate heat
13. Consider the following E^{0} values. $E_{\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}}^{0}=+0.77 \mathrm{~V}$, $E_{\mathrm{Sn}^{2}+/ S n}^{0}=+0.14 \mathrm{~V}$. The $E_{\text {cell }}^{0}$ for the reaction;
$\mathrm{Sn}(\mathrm{s})+2 \mathrm{Fe}^{3+}(\mathrm{aq}) \longrightarrow 2 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{Sn}^{2+}(\mathrm{aq})$ is
(a) 0.63 V
(b) 1.40 V
(c) 0.91 V
(d) 1.68 V
14. The standard emf of a cell having one electron charge is found to be 0.591 V at $25^{\circ} \mathrm{C}$. The equilibrium constant of the reaction is:
(a) 1.0×10^{30}
(b) 1.0×10^{5}
(c) 1.0×10^{10}
(d) 1.0×10^{1}

Chemistry by : Er. S. K. Singh (B.Tech. M. Tech, M.N.N.I.T Alld.)
(a) - 16.13
(b) -8.12
(c) +8.612
(d) -37.83
25. Resistance of a conductivity cell filled with a solution of an electrolyte of concentration 0.1 M is 100Ω. The conductivity of this solution is $1.29 \mathrm{~S} \mathrm{~m}^{-1}$. Resistance of the same cell when filled with 0.02 M of the same solution is 520Ω. The molar conductivity of 0.02 M solution of the electrolyte will be:
(a) $124 \times 10^{-4} \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}$
(b) $1240 \times 10^{-4} \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}$
(c) $1.24 \times 10^{-4} \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}$
(d) $12.4 \times 10^{-4} \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}$
26. The molar conductivities $\Lambda_{\mathrm{NaOAc}}^{0}$ and $\Lambda_{\mathrm{HCl}}^{0}$ at infinite dilution in water at $25^{\circ} \mathrm{C}$ are 91.0 and $426.2 \mathrm{~S} \mathrm{~cm}^{2} / \mathrm{mol}$ respectively. To calculate $\Lambda_{\text {HOAc }}^{0}$, the additional value required is:
(a) $\Lambda_{\mathrm{H}_{2} \mathrm{O}}^{0}$
(b) $\Lambda_{\mathrm{KCl}}^{0}$
(c) $\Lambda_{\mathrm{NaOH}}^{0}$
(d) $\Lambda_{\mathrm{NaCl}}^{0}$
27. The cell, $\left.\mathrm{Zn}\left|\mathrm{Zn}^{2+}(1 \mathrm{M})\right|\left|\mathrm{Cu}^{2+}(1 \mathrm{M})\right| \mathrm{Cu}\left(\mathrm{E}_{\text {cell }}^{0}=1.10 \mathrm{~V}\right)\right)$, was allowed to be completely discharged at 298 K . The relative concentration of Zn^{2+} to $\mathrm{Cu}^{2+},\left[\frac{\mathrm{Zn}^{2+}}{\mathrm{Cu}^{2+}}\right]$ is:
(a) antilog (24.08)
(b) 37.3
(c) $10^{37.3}$
(d) 9.65×10^{4}
28. Given $\quad \mathrm{E}_{\mathrm{Cr}^{3+} / \mathrm{Cr}}^{0}=-0.72 \mathrm{~V}, \quad \mathrm{E}_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{0}=-0.42 \mathrm{~V}$. The potential for the cell
$\mathrm{Cr}\left|\mathrm{Cr}^{3+}(0.1 M)\right|\left|\mathrm{Fe}^{2+}(0.01 M)\right| \mathrm{Fe}$ is
(a) 0.26 V
(b) 0.339 V
(c) -0.399 V
(d) -0.26 V
29. Given $\mathrm{E}_{\mathrm{Fe}^{3+} / \mathrm{Fe}}^{0}=-0.036 \mathrm{~V}, \quad \mathrm{E}_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{0}=-0.439 \mathrm{~V}$

The value of standard electrode potential for the change, $\mathrm{Fe}^{3+}(a q)+e \longrightarrow \mathrm{Fe}^{2+}(a q)$ will be:
(a) -0.072 V
(b) 0.385 V
(c) 0.770 V
(d) -0.270 V
30. In a fuel cell, methanol is used as fuel and oxygen gas is used as an oxidizer. The reaction is

$$
\mathrm{CH}_{3} \mathrm{OH}(l)+\frac{3}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)
$$

At 298 K, standard Gibbs energies of formation for $\mathrm{CH}_{3} \mathrm{OH}(l), \mathrm{H}_{2} \mathrm{O}(l)$ and $\mathrm{CO}_{2}(\mathrm{~g})$ are -166.2, -237.2 and $394.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. If standard enthalpy of combustion of methanol is $-726 \mathrm{~kJ} \mathrm{~mol}^{-1}$, efficiency of the fuel cell will be:
(a) 80%
(b) 87%
(c) 90%
(d) 97%
31. The Gibbs energy for the decomposition of $\mathrm{Al}_{2} \mathrm{O}_{3}$ at $500^{\circ} \mathrm{C}$ is as follows
$\frac{2}{3} \mathrm{Al}_{2} \mathrm{O}_{3} \longrightarrow \frac{4}{3} \mathrm{Al}+\mathrm{O}_{2}, \Delta_{r} \mathrm{G}=+966 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The potential difference needed for electrolytic reduction of $\mathrm{Al}_{2} \mathrm{O}_{3}$ at $500^{\circ} \mathrm{C}$ is at least

Chemistry by : Er. S. K. Singh (B.Tech. M. Tech, M.N.N.I.T Alld.)
(a) 4.5 V
(b) 3.0 V
(c) 2.5 V
(d) 5.0 V
32. The reduction potential of hydrogen half-cell will be negative if
(a) $p\left(\mathrm{H}_{2}\right)=1 \mathrm{~atm}$ and $\left(\mathrm{H}^{+}\right)=2.0 \mathrm{M}$
(b) $p\left(\mathrm{H}_{2}\right)=1 \mathrm{~atm}$ and $\left(\mathrm{H}^{+}\right)=1.0 \mathrm{M}$
(c) $p\left(\mathrm{H}_{2}\right)=2 \mathrm{~atm}$ and $\left(\mathrm{H}^{+}\right)=1.0 \mathrm{M}$
(d) $p\left(\mathrm{H}_{2}\right)=2 \mathrm{~atm}$ and $\left(\mathrm{H}^{+}\right)=2.0 \mathrm{M}$
33. Resistance of 0.2 M solution of an electrolyte is 50Ω. The specific conductance of the solution is $1.3 \mathrm{~S} \mathrm{~m}^{-1}$. If resistance of the 0.4 M solution of the same electrolyte is 260Ω, its molar conductivity is:
(a) $6250 \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}$
(b) $6.25 \times 10^{-4} \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}$
(c) $625 \times 10^{-4} \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}$
(d) $62.5 \times 10^{-4} \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}$
34. The incorrect expression among the following is
(a) $\frac{\Delta \mathrm{G}_{\text {system }}}{\Delta \mathrm{S}_{\text {total }}}=-\mathrm{T}$
(b) In spontaneous process, $\mathrm{W}_{\text {reversible }}=n \mathrm{RT} \ln \frac{\mathrm{V}_{f}}{\mathrm{~V}_{i}}$
(c) $\ln \mathrm{K}=\frac{\Delta \mathrm{H}^{0}-\mathrm{T} \Delta \mathrm{S}^{0}}{\mathrm{RT}}$
(d) $\mathrm{K}=e^{-\Delta \mathrm{G}^{\mathrm{O}} / \mathrm{RT}}$
35. The standard reduction potentials for $\mathrm{Zn}^{2+} / \mathrm{Zn}, \mathrm{Ni}^{2+} / \mathrm{Ni}$ and $\mathrm{Fe}^{2+} / \mathrm{Fe}$ are $-0.76,-0.23$ and -0.44 V , respectively. The reaction $\mathrm{X}+\mathrm{Y}^{2+} \longrightarrow \mathrm{Y}+\mathrm{X}^{2+}$ will be spontaneous when
(a) $\mathrm{X}=\mathrm{Ni}, \mathrm{Y}=\mathrm{Fe}$
(b) $\mathrm{X}=\mathrm{Ni}, \mathrm{Y}=\mathrm{Zn}$
(c) $\mathrm{X}=\mathrm{Fe}, \mathrm{Y}=\mathrm{Zn}$
(d) $\mathrm{X}=\mathrm{Zn}, \mathrm{Y}=\mathrm{Ni}$
36. Given, $\mathrm{E}_{\mathrm{Cr}^{3+} / \mathrm{Cr}}^{0}=-0.74 \mathrm{~V}$; $\mathrm{E}_{\mathrm{MnO}_{4}^{-} / \mathrm{Mn}^{2+}}^{0}=1.51 \mathrm{~V}$
$\mathrm{E}_{\mathrm{Cr}_{2} 0_{7}^{-} / \mathrm{Cr}^{3+}}^{0}=1.33 \mathrm{~V} ; \quad \mathrm{E}_{\mathrm{Cl} / \mathrm{Cl}^{-}}^{0}=1.36 \mathrm{~V}$;
Based on the data given above, strongest oxidising agent will be
(a) Cl
(b) Cr^{3+}
(c) Mn^{2+}
(d) MnO_{4}^{-}
37. Resistance of 0.2 M solution of an electrolyte is 50Ω. The specific conductance of the solution is $1.4 \mathrm{~S} \mathrm{~m}^{-1}$. The resistance of 0.5 M solution of the same electrolyte is 280Ω. The molar conductivity of 0.5 M solution of the electrolyte is $\mathrm{S} \mathrm{mol}^{-1}$ is
(a) 5×10^{-4}
(b) 5×10^{-3}
(c) 5×10^{3}
(d) 5×10^{2}
38. The equivalent conductance of NaCl at concentration C and at infinite dilution are λ_{c} and λ_{∞} respectively.

The correct relationship between λ_{c} and λ_{∞} is given as
(a) $\lambda_{c}=\lambda_{\infty}+(B) C$
(b) $\lambda_{c}=\lambda_{\infty}-(\mathrm{B}) \mathrm{C}$
(c) $\lambda_{c}=\lambda_{\infty}-(B) \sqrt{C}$
(d) $\lambda_{c}=\lambda_{\infty}+(B) \sqrt{C}$
39. The metal that cannot be obtained by the electrolysis of an aqueous solution of its salts is
(a) Ag
(b) Ca
(c) Cu
(d) Cr
40. Given below are the half-cell reactions
$\mathrm{Mn}^{2+}+2 e^{-} \longrightarrow \mathrm{Mn}, \mathrm{E}^{0}=-1.18 \mathrm{~V}$
$2\left(\mathrm{Mn}^{3+}+e^{-} \longrightarrow \mathrm{Mn}^{2+}\right), \mathrm{E}^{0}=+1.51 \mathrm{~V}$
The E^{0} for $3 \mathrm{Mn}^{2+} \longrightarrow \mathrm{Mn}+2 \mathrm{Mn}^{3+}$ will be
(a) -2.69 V , the reaction will not occur
(b) -2.69 V , the reaction will occur
(c) -0.33 V , the reaction will not occur
(d) -0.33 V , the reaction will occur
41. Two Faraday of electricity is passed through a solution of CuSO_{4}. The mass of copper deposited at the cathode is: (at. mass of $\mathrm{Cu}=63.5 \mathrm{amu}$)
(a) 0 g
(b) 63.5 g
(c) 2 g
(d) 127 g
42. Galvanization is applying a coating of:
(a) Zn
(b) Pb
(c) Cr
(d) Cu
43. Given, $\mathrm{E}_{\mathrm{Cl}_{2} / \mathrm{Cl} 1}^{0}=1.36 \mathrm{~V} ; \quad \mathrm{E}_{\mathrm{Cr}^{3+} / \mathrm{Cr}}^{0}=-0.74 \mathrm{~V}$
$\mathrm{E}_{\mathrm{Cr}_{2} \mathrm{O}_{7}^{-} / \mathrm{Cr}^{3+}}^{0}=1.33 \mathrm{~V} ; \quad \mathrm{E}_{\mathrm{MnO}_{4}^{-} / \mathrm{Mn}^{2+}}^{0}=1.51 \mathrm{~V}$
Among the following the strongest reducing agent is:
(a) Cr
(b) Mn^{2+}
(c) Cr^{3+}
(d) Cl
44. How long (approximate) should water be electrolysed by passing through 100 amperes current so that the oxygen released can completely burn 27.66 g of diborane? (Atomic weight of $B=10.8 \mathrm{u}$)
(a) 6.4 hours
(b) 0.8 hour
(c) 3.2 hours
(d) 1.6 hours
45. Consider the statements S1 and S2:

S1: Conductivity always increases with decrease in the concentration of electrolyte.
S2: Molar conductivity always increases with decrease in the concentration of electrolyte.
The correct option among the following is:
(a) S 1 is wrong and S 2 is correct
(b) S 1 is correct and S 2 is wrong
(c) Both S1 and S2 are wrong
(d) Both S1 and S2 are correct
46. The decreasing order of electrical conductivity of the following aqueous solutions is:
0.1 M Formic acid (A),
0.1 M Acetic acid (B),
0.1 M Benzoic acid (C),
(a) A $>$ B $>$ C
(b) A $>$ C $>$ B
(c) C $>$ B $>$ A
(d) C $>$ A $>$ B
47. Given;
$\mathrm{Co}^{3+}+e^{-} \rightarrow \mathrm{Co}^{2+} ; \mathrm{E}^{0}=+1.81 \mathrm{~V}$
$\mathrm{Pb}^{4+}+2 e^{-} \rightarrow \mathrm{Pb}^{2+} ; \mathrm{E}^{0}=+1.67 \mathrm{~V}$

Chemistry by : Er. S. K. Singh (B.Tech. M. Tech, M.N.N.I.T Alld.)
$\mathrm{Ce}^{4+}+e^{-} \rightarrow \mathrm{Ce}^{3+} ; \mathrm{E}^{0}=+1.61 \mathrm{~V}$
$\mathrm{Bi}^{3+}+3 e^{-} \rightarrow \mathrm{Bi} ; \mathrm{E}^{0}=+0.20 \mathrm{~V}$
Oxidizing power of the species will increase in the order:
(a) $\mathrm{Co}^{3+}<\mathrm{Ce}^{4+}<\mathrm{Bi}^{3+}<\mathrm{Pb}^{4+}$
(b) $\mathrm{Co}^{3+}<\mathrm{Pb}^{4+}<\mathrm{Ce}^{4+}<\mathrm{Bi}^{3+}$
(c) $\mathrm{Ce}^{4+}<\mathrm{Pb}^{4+}<\mathrm{Bi}^{3+}<\mathrm{Co}^{3+}$
(d) $\mathrm{Bi}^{3+}<\mathrm{Ce}^{4+}<\mathrm{Pb}^{4+}<\mathrm{Co}^{3+}$
48. Calculate the standard cell potential (in V) of the cell in which following reaction takes place:
$\mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{Ag}^{+}(\mathrm{ag}) \longrightarrow \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{Ag}(\mathrm{s})$
Given that
$\mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{0}=x \mathrm{~V} \quad \mathrm{E}_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{0}=y \mathrm{~V}$
$\mathrm{E}_{\mathrm{Fe}^{3+} / \mathrm{Fe}}^{0}=z \mathrm{~V}$
(a) $x-y$
(b) $x+y-z$
(c) $x+2 y-3 z$
(d) $x-z$
49. Which one of the following graphs between molar conductivity $\left(\Lambda_{m}\right)$ versus \sqrt{C} is correct?
(a)

(b)

