J. Al En	EE MAIN DVANCED KGINEERING	HEMICA <u>"A challenge</u> in GENERAL ORGAN	n Che	P (emistry chemis	DINT TRY	NI AI ME	EET IMS DICAL
	nstructor Er. S	K. SINGH (B. Tech	мт	ech) M N			
			, 191.10	helow	.1 1.1.1. Anu.	INF	FT 20211
1	The molecular geometry	ISATION		(a) (a)-	(iv), (b)-(iii), (c)-(i	i), (d)-(ii)	EI 2021j
Ans.	 is the geometry of SF electrons, if any)? (a) Tetrahedral (c) Pyramidal (b) 	 (including lone pair(s) of [JEE Main 2020] (b) Trigonal bipyramidal (d) Square planar 	Ans. 8.	(b) (a)- (c) (a)- (d) (a)- (a) Match t	(ii), (b)-(iii), (c)-(i (iii), (b)-(i), (c)-(iv (iv), (b)-(iii), (c)-(i the compounds	v), (d)-(i)), (d)-(ii) ii), (d)-(i) Xe is column	I with the
2.	The standard heat of fo	formation $(\Delta_f H_{298}^0)$ of ethane		molecula Col	ar structure in co	Column II. [NEET	2020j I
Ans. 3.	(in kJ/mol), if the heat hydrogen and graphite ar mol, respectively is (a) -192.50 (c) +1560.50 (a) The structure of PCl ₅ in (a) tetrahedral [PCl ₄] ⁺ = (b) trigonal bipyramida	t of combustion of ethane, e -1560, -393.5 and -286 kJ/ [JEE Main 2020] (b) +192.50 (d) -1560.50 the solid state is and octahedral $[PCl_6]^-$	Ans.	(a) XeF (b) XeF (c) XeC (d) XeC (a) (a)- (b) (a)- (c) (a)- (d) (a)- (d)	$\begin{array}{c} & & \\$	(i) Square pla (ii) Linear (iii) Square py (iv) Pyramidal), (d)-(iv) (ii), (d)-(i)), (d)-(ii)), (d)-(iii)	annar ramidal
	(c) square planar [PCl]] ⁺ and octahedral [PCl ₂] ⁻	9.	Match	the cooridnatio	on number ar	nd type of
	(d) square pyramidal	[JEE Main 2020]		hybridis	ation with distrib	oution of hybrid	orbitals in
Ans.	(a)			space ba	ased on valence to ardination	Dond theory.	ion of
4.	The ion that has sp^3d^2	hybridisation for the central		nui	mber and type	hybrid or	bitals in
	atom, is	[JEE Main 2019]		of	hybridisation	space	
	(a) $[ICl_2]^-$	(b) $[BrF_2]^-$		(a) 4, s	sp^3	(i) trigonal bi	pyramidal
		(d) [IF] ⁻		(b) / /	isp		
	(c) $[ICI_4]$	(u) [II ₆]		(b) $4, a$ (c) $5, s$	$sp^{3}d$	(iii) tatrahedra	1
Ans. 5.	(c) $[ICI_4]$ (c) The sum of the number each central atom in th	of lone pairs of electrons on e following species is		(b) 4, a (c) 5, s (d) 6, a Identify (a) (a)-	sp^3d t^2sp^2 the correct meta (ii), (b)-(iii), (c)-(iii), (c)-(iii), (c)-(iii), (c)-(iii), (c)-(iii))	(iii) tatrahedra (iv) square pla 1. [N v), (d)-(i)	l mar EET 2020]
Ans. 5.	(c) $[ICI_4]$ (c) The sum of the number each central atom in th $[TeBr_6]^{2^-}, [BrF_2]^+, SNF_3$ ar	of lone pairs of electrons on e following species is $[XeF_3]^-$		 (b) 4, a (c) 5, s (d) 6, a Identify (a) (a)- (b) (a)- (c) (a)- 	$sp^{3}d$ $d^{2}sp^{2}$ the correct meta (ii), (b)-(iii), (c)-(ii) (iii), (b)-(iv), (c)-(ii) (iv), (b)-(i), (c)-(ii)	(iii) tatrahedra (iv) square pla 1. [N v), (d)-(i) (d)-(ii)	l inar EET 2020]
Ans. 5.	(c) [ICI ₄] (c) The sum of the number each central atom in th $[TeBr_6]^{2-}, [BrF_2]^+, SNF_3$ ar (Atomic numbers : N = 7 52. Xe = -54)	of lone pairs of electrons on e following species is ad $[XeF_3]^-$, F = 9, S = 16, Br = 35, Te =		(b) 4, 6 (c) 5, s (d) 6, 6 Identify (a) (a)- (b) (a)- (c) (a)- (d) (a)-	sp^3d t^2sp^2 the correct meta (ii), (b)-(iii), (c)-(ii) (iii), (b)-(iv), (c)-(ii) (iv), (b)-(i), (c)-(ii) (iii), (b)-(i), (c)-(iv)	(iii) tatrahedra (iv) square pla 1. [N v), (d)-(i) i), (d)-(ii) i, (d)-(iii) r), (d)-(iii)	l inar EET 2020]
Ans. 5.	(c) $[ICI_4]$ (c) The sum of the number each central atom in th $[TeBr_6]^{2-}, [BrF_2]^+, SNF_3$ ar (Atomic numbers : N = 7 52, Xe = =54) (a) 5	of lone pairs of electrons on e following species is ad $[XeF_3]^-$, F = 9, S = 16, Br = 35, Te = [JEE Adv 2017] (b) 6	Ans. 10	 (b) 4, a (c) 5, s (d) 6, a Identify (a) (a)- (b) (a)- (c) (a)- (d) (a)- (b) (a)- (b) (c) (d) (a)- (b) (a)- (c) (a)- (d) (a)- (e) (b) (c) (c)<th>sp^3d d^2sp^2 the correct meta (ii), (b)-(iii), (c)-(ii) (iii), (b)-(iv), (c)-(ii) (iv), (b)-(i), (c)-(ii) (iii), (b)-(i), (c)-(iv) the wrongly mate</th><th>(iii) tatrahedra (iv) square pla 1. [N v), (d)-(i) 1), (d)-(ii) 1), (d)-(iii) 1), (d)-(iii) 1), (d)-(iii)</th><th>1 inar EET 2020]</th>	sp^3d d^2sp^2 the correct meta (ii), (b)-(iii), (c)-(ii) (iii), (b)-(iv), (c)-(ii) (iv), (b)-(i), (c)-(ii) (iii), (b)-(i), (c)-(iv) the wrongly mate	(iii) tatrahedra (iv) square pla 1. [N v), (d)-(i) 1), (d)-(ii) 1), (d)-(iii) 1), (d)-(iii) 1), (d)-(iii)	1 inar EET 2020]
Ans. 5.	(c) $[ICI_4]$ (c) The sum of the number each central atom in th $[TeBr_6]^{2-}, [BrF_2]^+, SNF_3$ ar (Atomic numbers : N = 7 52, Xe = =54) (a) 5 (c) 7	(d) $[\Pi_{6}]$ of lone pairs of electrons on e following species is nd $[XeF_3]^-$, F = 9, S = 16, Br = 35, Te = [JEE Adv 2017] (b) 6 (d) 8	Ans. 10.	(b) 4, 6 (c) 5, 8 (d) 6, 6 Identify (a) (a)- (b) (a)- (c) (a)- (d) (a)- (b) Identify Mo	$sp^{3}d$ $l^{2}sp^{2}$ the correct meta (ii), (b)-(iii), (c)-(i (iii), (b)-(iv), (c)-(i) (iv), (b)-(i), (c)-(iv) (iii), (b)-(i), (c)-(iv) the wrongly matce lecule	(iii) tatrahedra (iv) square pla 1. [N v), (d)-(i) i), (d)-(ii) i, (d)-(iii) r), (d)-(iii) thed pair. [N Shape of geon	l inar EET 2020] [EET 2020] netry
Ans. 5. Ans.	(c) $[ICI_4]$ (c) The sum of the number each central atom in th $[TeBr_6]^{2-}, [BrF_2]^+, SNF_3$ ar (Atomic numbers : N = 7 52, Xe = =54) (a) 5 (c) 7 (b) PE is planar and also	(d) $[\Pi_{6}]$ of lone pairs of electrons on e following species is nd $[XeF_3]^-$, F = 9, S = 16, Br = 35, Te = [JEE Adv 2017] (b) 6 (d) 8	Ans. 10.	(b) 4, 6 (c) 5, s (d) 6, 6 Identify (a) (a)- (b) (a)- (c) (a)- (d) (a)- (b) Identify Mo (a) PCI	$sp^{3}d$ $d^{2}sp^{2}$ the correct meta (ii), (b)-(iii), (c)-(ii) (iii), (b)-(iv), (c)-(ii) (iv), (b)-(i), (c)-(ii) (iii), (b)-(i), (c)-(iv) the wrongly matce lecule 5	(iii) tatrahedra (iv) square pla 1. [N v), (d)-(i) (d)-(ii) (d)-(iii) (d)-(iii) (d)-(iii) thed pair. [N Shape of geon Trigonal plana	l mar EET 2020] [EET 2020] netry r
Ans. 5. Ans. 6.	(c) $[ICI_4]$ (c) The sum of the number each central atom in th $[TeBr_6]^{2^-}, [BrF_2]^+, SNF_3$ ar (Atomic numbers : N = 7 52, Xe = =54) (a) 5 (c) 7 (b) BF ₃ is planar and elect Hybridization and number	 (d) [H₆] of lone pairs of electrons on e following species is ind [XeF₃]⁻ , F = 9, S = 16, Br = 35, Te = [JEE Adv 2017] (b) 6 (d) 8 etron deficient compound. ber of electrons around the 	Ans. 10.	(b) 4, 6 (c) 5, s (d) 6, 6 Identify (a) (a)- (b) (a)- (c) (a)- (d) (a)- (d) (a)- (b) SF (a) PCI (b) SF (a) PC	$sp^{3}d$ $d^{2}sp^{2}$ the correct meta (ii), (b)-(iii), (c)-(ii) (iii), (b)-(iv), (c)-(ii) (iii), (b)-(i), (c)-(iv) (iii), (b)-(i), (c)-(iv) the wrongly matched lecule 5	 (iii) tatrahedra (iv) square pla 1. [N v), (d)-(i) i), (d)-(ii) i), (d)-(iii) i), (d)-(iii) ched pair. [N Shape of geon Trigonal plana Octahedral Linaor 	l Inar EET 2020] IEET 2020] netry r
Ans. 5. Ans. 6.	(c) $[ICI_4]$ (c) The sum of the number each central atom in th $[TeBr_6]^{2-}, [BrF_2]^+, SNF_3$ ar (Atomic numbers : N = 7 52, Xe = =54) (a) 5 (c) 7 (b) BF ₃ is planar and elec Hybridization and number central atom, respective	 (d) [H₆] of lone pairs of electrons on e following species is ind [XeF₃]⁻ , F = 9, S = 16, Br = 35, Te = [JEE Adv 2017] (b) 6 (d) 8 etron deficient compound. ber of electrons around the ly are: [NEET 2021] 	Ans. 10.	 (b) 4, a (c) 5, s (d) 6, a Identify (a) (a)- (b) (a)- (c) (a)- (d) (a)- (d) (a)- (b) Identify Mo (a) PCI (b) SF₆ (c) BeC (d) NH 	$sp^{3}d$ $d^{2}sp^{2}$ the correct meta (ii), (b)-(iii), (c)-(ii) (iii), (b)-(iv), (c)-(ii) (iv), (b)-(i), (c)-(ii) (iii), (b)-(i), (c)-(iv) the wrongly matched 16cule 5 Cl ₂	 (iii) tatrahedra (iv) square pla (iv) square pla (iv) square pla (iv) square pla (d)-(i) (d)-(ii) (d)-(iii) (d)-(iii)	l inar EET 2020] [EET 2020] netry r nidal
Ans. 5. Ans. 6.	(c) $[ICI_4]$ (c) The sum of the number each central atom in th $[TeBr_6]^{2-}, [BrF_2]^+, SNF_3$ ar (Atomic numbers : N = 7 52, Xe = =54) (a) 5 (c) 7 (b) BF ₃ is planar and elec Hybridization and number central atom, respective (a) sp^2 and 4 (c) sp^2 and 4	 (d) [H₆] of lone pairs of electrons on e following species is nd [XeF₃]⁻ , F = 9, S = 16, Br = 35, Te = [JEE Adv 2017] (b) 6 (d) 8 ctron deficient compound. ber of electrons around the ly are: [NEET 2021] (b) sp³ and 6 (d) sr² and 6 	Ans. 10. Ans.	 (b) 4, a (c) 5, s (d) 6, a Identify (a) (a)- (b) (a)- (c) (a)- (d) (a)- (d) (a)- (b) Identify Mo (a) PCI (b) SF₆ (c) BeC (d) NH (a) 	$sp^{3}d$ $d^{2}sp^{2}$ the correct meta (ii), (b)-(iii), (c)-(ii) (iii), (b)-(iv), (c)-(ii) (iii), (b)-(i), (c)-(iv) (iii), (b)-(i), (c)-(iv) the wrongly matched lecule 5 $2l_{2}$ 3	 (iii) tatrahedra (iv) square pla 1. [N v), (d)-(i) i), (d)-(ii) i), (d)-(iii) ched pair. [N Shape of geon Trigonal plana Octahedral Linear Trigonal pyram 	l mar EET 2020] IEET 2020] netry r hidal
Ans. 5. Ans. 6.	(c) $[ICI_4]$ (c) The sum of the number each central atom in th $[TeBr_6]^{2^-}, [BrF_2]^+, SNF_3$ ar (Atomic numbers : N = 7 52, Xe = =54) (a) 5 (c) 7 (b) BF ₃ is planar and elec Hybridization and numl central atom, respective (a) sp^2 and 4 (c) sp^2 and 6 C)	(d) $[\Pi_{6}]$ of lone pairs of electrons on e following species is nd $[XeF_3]^-$, F = 9, S = 16, Br = 35, Te = [JEE Adv 2017] (b) 6 (d) 8 etron deficient compound. ber of electrons around the ly are: [NEET 2021] (b) sp^3 and 6 (d) sp^2 and 8	Ans. 10. Ans. 11.	(b) 4, a (c) 5, s (d) 6, a Identify (a) (a)- (b) (a)- (c) (a)- (d) (a)- (b) Identify (a) PCI (b) SF ₆ (c) BeC (d) NH (a) Among t	sp^3d d^2sp^2 the correct meta (ii), (b)-(iii), (c)-(ii) (iii), (b)-(iv), (c)-(ii) (iii), (b)-(i), (c)-(iv) (iii), (b)-(i), (c)-(iv) the wrongly matched lecule s Cl_2 s he triatomic mole	 (iii) tatrahedra (iv) square pla (iv) square pla (iv) square pla (iv) square pla (d)-(i) (d)-(ii) (d)-(iii) (iv) (d)-(iii) (iv) (d)-(iii) (d)-(iii) (d)-(iii) (d)-(iii) (d)-(iii) (d)-(iii) (iv) (d)-(iii) (iv	1 mar EET 2020] IEET 2020] netry r hidal l_2, N_3^-, N_2O_2
Ans. 5. Ans. 6. 7.	(c) $[ICI_4]$ (c) The sum of the number each central atom in th $[TeBr_6]^{2-}, [BrF_2]^+, SNF_3$ ar (Atomic numbers : N = 7 52, Xe = =54) (a) 5 (c) 7 (b) BF ₃ is planar and elect Hybridization and numl central atom, respective (a) sp^2 and 4 (c) sp^2 and 6 C) Match List-I with List-I	(d) $[\Pi_{6}]$ of lone pairs of electrons on e following species is ind $[XeF_3]^-$, F = 9, S = 16, Br = 35, Te = [JEE Adv 2017] (b) 6 (d) 8 etron deficient compound. ber of electrons around the ly are: [NEET 2021] (b) sp^3 and 6 (d) sp^2 and 8	Ans. 10. Ans. 11.	(b) 4, a (c) 5, s (d) 6, a Identify (a) (a)- (b) (a)- (c) (a)- (d) (a)- (b) Identify Mo (a) PCI (b) SF ₆ (c) BeC (d) NH (a) Among t	sp^3d d^2sp^2 the correct meta (ii), (b)-(iii), (c)-(ii) (iii), (b)-(iv), (c)-(ii) (iii), (b)-(i), (c)-(iv) (iii), (b)-(i), (c)-(iv) the wrongly matched lecule 5 Cl_2 3 he triatomic mole	 (iii) tatrahedra (iv) square pla (iv) square pla (iv) square pla (iv) square pla (d)-(i) (d)-(ii) (d)-(iii) (i)-(i) 	l mar EET 2020] [EET 2020] netry r hidal $l_2, N_3^-, N_2O,$ l number of
Ans. 5. Ans. 6. 7.	(c) $[ICI_4]$ (c) The sum of the number each central atom in th $[TeBr_6]^{2-}, [BrF_2]^+, SNF_3$ ar (Atomic numbers : N = 7 52, Xe = =54) (a) 5 (c) 7 (b) BF ₃ is planar and elect Hybridization and number central atom, respective (a) sp^2 and 4 (c) sp^2 and 4 (c) sp^2 and 4 (c) sp^2 and 6 C) Match List-I with List-II Column I (a) PCl ₃ (b) SF ₆ (c) BrF ₅ (d) BF ₃ Choose the correct ans	(d) $[\Pi_{61}^{-1}]$ of lone pairs of electrons on e following species is nd $[XeF_3]^-$, F = 9, S = 16, Br = 35, Te = [JEE Adv 2017] (b) 6 (d) 8 etron deficient compound. ber of electrons around the ly are: [NEET 2021] (b) sp^3 and 6 (d) sp^2 and 8 I. Column II (i) Square pyramidal (ii) Trigonal planar (iii) Octabedral (iv) Trigonal bipyradmial wer from the options given	Ans. 10. Ans. 11.	(b) 4, a (c) 5, s (d) 6, a Identify (a) (a)- (b) (a)- (c) (a)- (c) (a)- (d) (a)- (d) (a)- (b) SF ₆ (c) BeC (d) NH (a) Among t NO ₂ ⁺ , O ₃ linear m of the cet the <i>d</i> -orl I = 53 ar (a) 5	sp^3d d^2sp^2 the correct meta (ii), (b)-(iii), (c)-(ii) (iii), (b)-(iv), (c)-(ii) (iii), (b)-(i), (c)-(iv) (iii), (b)-(i), (c)-(iv) the wrongly matched lecule s^5 Cl_2 3 he triatomic mole $p_1, SCl_2, ICl_2^-, I_3^-$ ar nolecules(s)/ion(sentral atom does bital(s) is [atomic nd Xe = 54]	(iii) tatrahedra (iii) tatrahedra (iv) square pla 1. [N v), (d)-(i) (d)-(ii) (d)-(ii) (d)-(ii) (d)-(ii) (li mar EET 2020] IEET 2020] netry r hidal l_2 , N_3^- , N_2O , l number of vbridisation bution from 16, Cl = 17, 2015]
Ans. 5. Ans. 6. 7.	(c) $[ICI_4]$ (c) The sum of the number each central atom in th $[TeBr_6]^{2^-}, [BrF_2]^+, SNF_3$ ar (Atomic numbers : N = 7 52, Xe = =54) (a) 5 (c) 7 (b) BF ₃ is planar and elect Hybridization and number central atom, respective (a) sp^2 and 4 (c) sp^2 and 4 (c) sp^2 and 4 (c) sp^2 and 4 (c) sp^2 and 6 C) Match List-I with List-II Column I (a) PCl ₃ (b) SF ₆ (c) BrF ₅ (d) BF ₃ Choose the correct ans	(d) $[\Pi_{61}^{-1}]^{-1}$ of lone pairs of electrons on e following species is nd $[XeF_3]^-$, F = 9, S = 16, Br = 35, Te = [JEE Adv 2017] (b) 6 (d) 8 etron deficient compound. ber of electrons around the ly are: [NEET 2021] (b) sp^3 and 6 (d) sp^2 and 8 I. Column II (i) Square pyramidal (ii) Trigonal planar (iii) Octabedral (iv) Trigonal bipyradmial wer from the options given	Ans. 10. Ans. 11.	(b) 4, a (c) 5, s (d) 6, a Identify (a) (a)- (b) (a)- (c) (a)- (d) (a)- (d) (a)- (d) (a)- (b) SF ₆ (c) BeC (d) NH (a) Among t NO ₂ ⁺ , O ₃ linear m of the ce the d-orl I = 53 ar (a) 5 (c) 6	sp^3d d^2sp^2 the correct meta (ii), (b)-(iii), (c)-(ii) (iii), (b)-(iv), (c)-(ii) (iii), (b)-(i), (c)-(iv) the wrongly match lecule r_5 Cl_2 r_3 he triatomic mole r_1 , SCl_2 , ICl_2^- , I_3^- ar nolecules(s)/ion(sentral atom does bital(s) is [atomic nd Xe = 54]	(iii) tatrahedra (iv) square pla (iv) square pla 1. [N v), (d)-(i) (d)-(ii) (d)	Il mar EET 2020] IEET 2020] netry r hidal $l_2, N_3^-, N_2O,$ l number of vbridisation bution from 16, Cl = 17, 2015]

Ans. (b) 12. In allene (C_3H_4) , the type(s) of hybridization of the carbon atoms is (are) [IIT] (a) sp and sp^3 (b) sp and sp^2 (c) only sp^2 (d) sp^2 and sp^3 Ans. (b) 13. In hexa-1, 3-dien-5-yne, the number of C - C, σ , C-C π and C - H σ bonds respectively are (a) 5, 4 and 6 (b) 6, 3 and 5 (c) 5, 3 and 6 (d) 6, 4 and 5 Ans. (a) 14. Considering the state of hybridisation of carbon atoms, find out the molecule among the following which is linear ? [CBSE AIPMT] CH₃-CH₂-CH₂-CH₃ (a) CH₃-CH=CH-CH₃ (b) (c) $CH_3 - C \equiv C - CH_3$ $CH_2 = CH - CH_2 - C \equiv CH$ (d) Ans. (c) Which of the two ions from the list given below that 15. have the geometry that is explained by the same hybridisation orbitals, $NO_2^-, NO_3^-, NH_2^-,$ of [CBSE AIPMT] NH_4^+, SCN^- ? NO_2^- and NH_2^- (b) NO_2^- and NO_3^- (a) NH_4^+ and NO_3^- (d) SCN⁻ and NH⁻₂ (c) Ans. (b) The geometry of electron pairs around I in IF₅ is 16. [DUMET] (a) octahedral (b) trigonal bipyramidal square pyramidal (d) pentagonal planar (c) Ans. (c) Among the following molecules : SO₂, SF₄, ClF₃, BrF₅ 17. and XeF_4 , which of the following shapes does not describe any of the molecules mentioned? [Kerala CEE] Bent (a) Trigonal bipyramidal (b) See-saw (c) (d) Square pyramidal (a) (b) Ans. (b) (c) 18. Hybridisation shown by carbon and oxygen of (d) -OH group in phenol are respectively, Ans. (a) (a) sp^2 , sp^2 (b) sp^3 , sp^3 27. (c) sp, sp^2 (d) sp^2 , sp^3 (a) Ans. (a) (c) 19. In which of the following pairs of molecules/ions, Ans. (b) the central atoms have sp² hybridisation ?[AIPMT] BF_3 and NH_2^- (b) NO_2^- and NH_3 28. (a) BF_3 and NO_2^- (d) NH_2^- and H_2O (c) (a) Ans. (c) 20. In which one of the following species, the central atom has the type of hybridisation which is not the same as that present in the other three [AIPMT] (b)

(b) SF_{4}

SbCl₅²⁻

(d)

(a)

(c)

PC1₅

 I_3^-

С	hemist	ry by :	Er. S.K. Si	ingh (B.Te	ech. M.	Tech, M.N	N.N.I.T Alld.)
Ans. 21.	(d) The (a) (b) (c) (d)	shape octahe trigona tertral	of IF ₇ mole edral al bipyram nedral	ecule is iidal			[AFMC]
Ans. 22.	(d) Shaj (a) (c)	pe and V shaj V shaj	hybridisat pe, sp pe, sp ²	ion of S (b) (d)	O ₂ are triang tetral	e gular pla nedral, s	[CPMT] nar, sp ² .p ²
Ans. 23.	(c) Whie hybr	ch of th ridisatic	ne followin on sp²-sp²- [R]	g repres sp-sp fr PMT, CO	ents t om le 3 PM1	the giver ft to rigi `, Harya :	n mode of ht? na PMT]
	(a) (c)	$H_2C =$ $H_2C =$	$CH - C \equiv I$ $C = C = CI$	N (b) H ₂ (d)	HC ∺ H₂C	≡C-C≡	CH CH ₂
Ans. 24.	(a) The orbit	AsF ₅ m tals use	olecule is t ed by the <i>i</i>	trigonal As atom	bipyra s for 1	umidal. T bonding 	he hybrid are [JCECE]
	(a)	$d_{x^2-y^2}$	d_{z^2}, s, p_x, p_x	<i>b_y</i> (b)	d_{xy}	$s, p_x, p_y,$	p_z
Ans.	(c) (c)	s, p_x, p_z	$p_{y}, p_{z}, a_{z^{2}}$	(d)	a_{x^2-x}	p_{y^2}, s, p_x, p_x	\mathcal{P}_{y}
25.	Whi hybr (a) (c)	ch one ridisatic CO ₂ N ₂ O	of the fo on ?	ollowing (b) (d)	$\begin{array}{c} \operatorname{com} \\ \operatorname{SO}_2 \\ \operatorname{CO} \end{array}$	pounds	has sp ² - [BVP]
Ans. 26.	(b) The hydi	state o rocarbo	f hybridisa n	ation of (C ₂ , C ₃	, C_5 and	$C_6^{}$ of the

$$CH_{3} = CH_{3} = CH_{3}$$

$$CH_{3} = CH_{4} = CH_{4} = CH_{3} = CH_{4} = C$$

[CBSE AIPMT] sequence sp, sp³, sp² and sp³ $sp^3,\,sp^2,\,sp^2$ and spsp, sp², sp² and sp³ sp, sp², sp³ and sp² [AFMC] The geometry of sulphate ion is square planar (b) tetrahedral square pyramidal (d) octahedral The five d-orbitals are designated as d_{xv} , d_{vz} , d_{xz} , $d_{x^2-v^2}$ and d_{z^2} . Choose the correct statement. [AMU] The shapes of the first three orbitals are similar but that of the fourth and fifth orbitals are different. The shape of all five d-orbitals are similar The shapes of the first four orbitals are (c)similar but that of the fifth orbital is different.

H.O.: 2/2-B, Kasturba Gandhi Marg, Near Mayohall Crossing, Kutchery Road, Prayagraj CHEMICA [2] Mob.: 9839206708, 9984889076 POINT

The shapes of all the five d-orbitals are (d)electrons on the central atoms, respectively different. the same with 2, 0 and 1 lone pairs of (d) Ans. (c) electrons on the central atoms, respectively 29. Which of the following hybridisation has planar Ans. (a) geometry ? [AMU] 37. The hybridisation of oxygen atom in H_2O_2 is sp³d (b) dsp^3 (a) [Kerala CEE] (a) sp³d (b) sp dsp² (d) sp³ (c) $\mathbf{s}\mathbf{p}^2$ (d) sp³ (c) Ans. (c) (d) Ans. The types of hybridisation on the five carbon atoms 30. 38. The compound in which underlined carbon uses only from left to right in the molecule its sp³ hybrid orbitals for bond formation is CH₃-CH=C=CH-CH₃ are [Kerala CEE] CH₃COOH (b) CH_3CONH_2 [**RPMT**] (a) (a) sp^3 , sp^2 , sp^2 , sp^2 , sp^3 (b) sp^3 , sp, sp^2 , sp^2 , sp^3 (c) sp^3 , sp^2 , sp, sp^2 , sp^3 (d) sp^3 , sp^2 , sp^2 , sp, sp^3 CH₃CH₂OH (d) $CH_3CH = CH_2$ (c) Ans. (c) Ans. (c) 31. The shape of XeOF₂ on the basis of VSEPR theory is 39. Which of the following carbon atoms is likely to [J&K CET] posses tetrahedral geometry? [RPMT] (b) V-shaped (a) see saw $H_2 \overset{4}{C} = \overset{3}{C}H - \overset{2}{C}H_2 - \overset{1}{C}OOH$ (d) T-shaped (c) trigonal planar Ans. (d) (a) 1 (b) 2 32. The 'd' orbital involved in the hybridisation in the (c) 3 (d) 4 PCl_z molecule is [J&K CET] Ans. (b) $3d_{x^2-y^2}$ (b) 3d₂ (a) 40. The correct order regarding the electronegativity of hybrid orbitals of carbon is [RPMT] (d) $4d_{x^2-y^2}$ $3d_{xy}$ (c)(a) $sp < sp^3 < sp^2$ (b) $sp < sp^2 < sp^3$ (d) $sp > sp^2 > sp^3$ $sp^2 < sp < sp^3$ (c) Ans. (b) CH₃ Ans. (d) 41. Which of the following species is non-linear? $HC \equiv C - C = CH_2$ 33. In the compound the (b) I_3^- [AMU] (a) ICl₂ hybridisation of C-2 and C-3 carbons are respectively [WB JEE] (d) $ClO_2^ N_3^-$ (c) (b) sp^2 and sp^3 (a) sp³ and sp³ Ans. (d) (d) sp^3 and sp(c) sp^2 and sp42. In which of the following species, all the three types Ans. (c) of hybrid carbons are present? [Kerala CEE] 34. Which of the following is incorrect match for (a) $CH_2 = C = CH_2$ (b) $CH_3 - CH = CH - CH_2^+$ hybridisation and geometry ? [BHU] Hybridisation Geometry $CH_3 - C \equiv C - CH_2^+$ (d) $CH_3 - CH = CH - CH_2^$ dsp^2 Planar (c) (a) d³s and sp³ Tetrahedral (b) Ans. (c) d²sp³ and sp³d² Octahedral (c) 43. A covalent molecule AB₃ has pyramidal structure. The (d) d³s Planar number of lone pair and bond pair of electrons in the Ans. (d) molecule are respectively. [Manipal] 35. X, Y are anhydrides of sulphurous acid and sulphuric (a) 2 and 2(b) 0 and 4 acid respectively. The hybridisation state and the (c) 3 and 1 (d) 1 and 3 shape of X and Y are [EAMCET] Ans. (d) Hybridisation Geometry 44. The percentage of p-character in the orbitals forming (a) sp², angular sp³, tetrahedral P–P bonds in P_4 is [IIT JEE] (b) sp², angular sp², angular (a) 25 (b) 33 sp², planar triangular sp², angular (c) 50 (d) 75 (c) (d) sp³, planar sp³, planar Ans. (d) Ans. (c) 45. The hybridisation of carbon atom in benzene is (b) sp^2 [UP SEE] (a) sp 36. The molecular shapes of SF_4 , SiF_4 and ICl_4^- are (c) sp³ (d) dsp^2 [Haryana PMT] Ans. (b) (a) different with 1, 0 and 2 lone pairs of 46. The hybridisation of P in PCl₅ is [AMU] electrons on the central atoms, respectively (a) sp^2 (b) $sp^{3}d$ different with 0, 1 and 2 lone pairs of (b) (c) sp^3 (d) dsp^2 electrons on the central atoms, respectively Ans. (b) (c)the same with 1, 1 and 1 lone pair of 47. Which one of the following is a correct set? H.O.: 2/2-B, Kasturba Gandhi Marg, Near Mayohall Crossing, Kutchery Road, Prayagraj CHEMICA [3] Mob.: 9839206708, 9984889076 POINT

Chemistry by : Er. S.K. Singh (B.Tech. M. Tech, M.N.N.I.T Alld.)

	(a) H_2 (b) H_2	O, sp ³ , angular O, sp ² , linear	[EAMCET]	58.	Whi sha	ch of the following pe?	mole	cules has a tetr	ahedral
1	(c) N	$H^+ den^2$ square planer			(a)	HgCl	(b)	CO	
	(C) IN	114, usp , square planar			(c)	NH. ⁺	(d)	Ni $(CN)^{2}$	
	(a) CF	I_4 , dsp ² , tetrahedral		Ans.	(c)	4	(4)	-(')4	
Ans. 10	(a) an^3 hub	ridiantian is not found in	[DCFCF]	59	The	compound in w	nich (C uses its sn^3	hybrid
48.	sp°nyo (a) H	Ω (b) CF	I BCECEJ	09.	orhi	tals in bonding is		<u>-</u> uses its sp	iiy bi iu
	(c) BC	(d) NF	1 ₄ 1_		(0)		(b)	(HN) CO	
Ans.	(c)	(3) 11	-3		(a)		(U) (4)	$(\Pi_2 N)_2 \underline{C} O$	
49.	Which	of the following statem	ents is correct for	•		$(C\Pi_3)_3 \underline{C} O\Pi$	(u)	сп ₃ <u>с</u> по	
	carbon	monoxide?		Ans.	(c)		D 1		C . 1
	(a) A	double bond between carl	oonand oxygen	60.	Acc	ording to the VSEP	R theo	ory, the geometr	y of the
	(b) 1σ	, 1π and 1 coordinate bo	nd between carbon		mol	ecule OF ₂ would be	2		
	an	d oxygen			(a)	linear	(b)	square planar	
	(c) Or $(d) 1 =$	te lone pair of electrons o	nly on oxygen atom		(c)	tetrahedral	(d)	octahedral	
	(a) 10	and 2π bonds between ca	arbon and oxygen.	Ans.	(c)				
Ans.	(D) The h	bridization in sulphur di	ovide is	61.	The	bonding of S in S	Cl ₄ mo	olecule involves	
50.	(a) sn	$(b) sp^2$			(a)	sp orbitals	(b)	sp ² orbitals	
	(a) sp	3 (d) dst	o^2		(c)	dsp ³ orbitals	(d)	dsp^2 orbitals	
Ans.	(b)			Ans.	(c)	· · ···	()	1	
51.	The st	pecific in which the cent	tral atom uses sp^2	62	The	structure of XeF	is		
	hybrid	orbitals in its bonding is	Ĩ	02.	(a)	square planar	10		
	(a) PH	I ₃ (b) NH	I ₃		(u) (b)	tetrahedral octahe	dral		
	(c) CH	H_{3}^{+} (d) Sb	H ₃		(c)	Octahedral	(d)	Distorted line	ar
Ans.	(c)			Ans.	(d)	ootanourur	(4)	210001004 11100	~~
52.	Among	g the following, the molec	ule that is linear is	63.	Acc	ording to the VSEP	R theo	ory, the arrange	ment of
	(a) C(D_2 (b) NC	\mathbf{D}_{2}^{2}		lone	e pairs of an atom o	ontair	ing a total of fo	ur such
	(c) SC	O_2 (d) Clo	J_2		pair	rs is			
Ans.	(a)	alaania minish haa a muua	unidal alaama in		(a)	Linear	(b)	Tetrahedral	
33 .	(a) P(viecule which has a pyrai	muai snape is	•	(C)	Square planar	(d)	Octahedron	
	(a) PC (c) CC) ²⁻ (d) NC	' ³) -	Ans.	(D)	ording to the VERD	D that	my the omenan	ment of
Ans.	(a)	- 3 (4) 10	3	04.	1004	e pairs of an atom		aining a total of	of three
54.	The lir	near structure is assumed	l by		suc	h pair is		u iotal (
- ·	(a) Sn	Cl ₂ (b) NC	20-		(a)	Linear	(b)	Trigonal plana	r
	(c) NC	$D_2^{+^2}$ (d) SO	2		(c)	Tetrahedral	(d)	Octahedron	
Ans.	(b)	-	-	Ans.	(b)				
55.	The ty	pe of hybrid orbitals used	by chlorine atom in	65.	Acc	ording to the VSEP	R theo	ory, the arrange	ment of
	ClO_2^{-1}	is			lone	e pairs of an atom (contair	ning a total of h	ve such
	(a) sp	• (b) sp ²	2		pair	8 18 Triangular planar	(b)	Trigonal hinter	midal
Ι.	(c) sp	(d) dsp	<u>0</u> ⁴		(a) (c)	Tetrahedron	(d) (h)	Octabedron	umual
Ans.	(a)			Ans.	(b)	i chancaroll	(u)	Setuncuron	
56.	The st	ate of hybridization of oxy	$ygen in OF_2$ is	66.	Acc	ording to the VSE	PR th	eory, the mole	cule IF_
	(a) sp	(b) sp ²	2		has	a shape of			5
	(c) sp	³ (d) dsp	p^2		(a)	trigonal pibyramid	(b)	tetrahedron	
Ans.	(c)				(c)	square pyramidal	(d)	pentagonal bip	yramid
57.	Hybrid	lization involves		Ans.	(c)				
	(a) Mi	xing of atomic orbitals ce	entred on the same	67.	Wh	ich of the follow	ving	compounds h	as sp^2
	, , ate	om			hyb	ridisation?			
	(h) Mi	xing of atomic orbitals can	tred on the different		(a)	CO ₂	(b)	SO_2	
		and of atomic of bitals CCII		÷	(c)	N_2O	(d)	CO	
				Ans.	(b)	a.a		.	
	(c) Ad	attion of an electron to a	n atom	68.	Mat	ch the entries of	colun	nn I with appr	opriate
	(d) Ad	ldition of an electron pair	to an atom		enri	es of column II at	a cho	hose the correct (b) (c) (d)	option
Ans.	(a)				out	of each question	s (a),	(b), (c), (d) give	n a the
					ena	or each question			
CHE	MICA	H.O. : 2/2-B, Kastı	urba Gandhi Marg, Nea	r Mayo	hall Cı	ossing, Kutchery Ro	oad , F	Prayagraj	
PC	DINT	, ·	Mob.: 98392	06708,	99848	389076			[4]

_

Column I Column II (p) *ICI*₄ (A) sp^2 (B) dsp^2 (q) $TeCl_4$ (C) sp^3d (r) $SnCl_2$ (s) $[Ni(CN)_{4}]^{2-}$ (D) sp^3d^2 (a) A-r, B-s, C-q, D-p (b) A-r, B-p, C-q, D-s (c) A-p, B-r, C-q, D-s (d) A-q, B-s, C-r, D-p Ans. (a) 69. Match List I (Molecules) with List-II (Boiling points) and select the correct answer Column I Column II (p) 290 K (A) NH₃ (B) PH₃ (q) 211 K (C) AsH₃ (r) 186 K (D) SbH (s) 264 K (t) 240 K (E) BiH₃ (a) A-r, B-q, C-t, D-s, E-p (b) A-t, B-r, C-q, D-s, E-p (c) A-p, B-s, C-t, D-q, E-r (d) A-p, B-q, C-r, D-s, E-t Ans. (b) 70. Match the shape of molecules in Column I with the type of hybridisation in Column II. Column I Column II (i) Tetrahedral (a) sp^2 (ii) Trigonal (b) sp (iii) Linear (c) sp^3 Ans (i)-(c), (ii)-(a); (iii)-(b)71.Number of lone pair(s) present in the structure of HNO, is Ans. (7) 72. Total number of lone pairs and bond pairs of electrons present around xenon in XeF_4 is Ans. (6) (The number of 90° bond angels present in the 73. molecules of SF_4 is Ans. (0) Based on VSEPR theory, the number of 90 degree 74. F-B-F angles in BrF₅ is Ans. (0) 75. A list of species having the formula XZ₄ is given below: XeF_4 , SF_4 , SiF_4 , BF_4^- , BrF_4^- , $[Cu(NH_3)_4]^{++}$, $[FeCl_4]^{2-}$, $[CoCl_4]^{2-}$ and $[PtCl_4]^{2-}$ Ans. (d) Defining shape on the basis of the location of X and Z atoms, the total number of species having a square planar shape is Ans. (4) $-CH_2$ is aromatic because it has 76. The radical ((a) 7 p-orbitals and seven unpaired electrons (b) 6 p-orbitals and 7 unpaired electrons (c) 6 p-orbitals and 6 unpaired electrons (d) 7 p-orbitals and 6 unpaired electrons (c) Ans. 77.Any *p*-orbital can accommodate upto (IIT 1983) (a) four electrons (b) six electrons (c) two electrons with parallel spins (d) two electrons with opposite Ans. (d) 78. The percentage of *p*-character in the orbitals forming (IIT 2007) P - P bonds in P_4 is: Ans. (d)

C	hemistry by :	Er. S.K. Sing	h (B.Tech.	M. Tech, M	A.N.N.I.T Alld.)
	(a) 25	(b) 33	(c) 50)	(d) 75
Ans. 79.	(d) Total num	ber of lone p	oair of el	ectrons i	n XeOF ₄ is: (IIT 2004)
_	(a) 0	(b) 1	(c) 2		(d) 3
Ans. 80.	(b) The compo	ounds used a	as refrige	erant are	(IIT 1990)
	(a) NH ₃	(b) CCl ₄	(c) CI	7 4	(d) CF_2Cl_2
Ans.	(a & d)				
81.	The total melamine	number of is:	lone p	air of el	lectrons in (IIT 2013)
Ans.	(6)				
82.	What are 1 in the follo $CH_2 = C = C_6H_6.$	hybridisation owing compo O, CH ₃ CH =	states o ounds? CH ₂ , (C	of each c CH ₃) ₂ CO,	arbon atom CH ₂ =CHCN,
Ans.	$CH_2^{sp^2} = C = O$	$, CH_3 - CH$	$V = CH_2$,	$ \begin{array}{c} $	$-cH_3$
	${}^{sp^2}_{CH_2} = {}^{sp^2}_{CH} -$	$-\overset{sp}{C} \equiv \overset{sp}{N}$,	H sp ² Eac	h C is sp	² -hybridized
83.	In the orga the pair of formation	nic compour of hybridise of $C_2 - C_3$ box	nd CH ₂ =0 ed orbita nd is :	CH–CH ₂ –C als invol	$CH_2 - C \equiv CH$, wed in the
Ans.	When both	n double and	l triple l	onds are	present at

ns. When both double and triple bonds are present at equivalent positions, double bond is given preference while numbering the carbon chain. Thus,

:. C_2 — C_3 bond is formed by overlap of sp^2 - sp^3 orbitals.

84. The species in which the N atom is in a state of *sp* hybridization is: [JEE MAIN 2016]
(a) NO⁻
(b) NO⁻

(a) 100_2	$(0) 100_3$
(c) NO_2	(d) NO_2^+

85. Match the compounds given in column I with the hybridisation and shape given in column II and mark the correct option [AIPMT 2016] Column I Column II

	A. XeF B. XeO C. XeO D. XeF Code:	5 3 F ₄ 4		(i) Distorted octahedral (ii) Square planar (iii)Pyramidal (iv)Square pyramidal				
	(A) (a) (i) (c) (iv)	(B) (iii) (iii)	(C) (iv) (i)	(D) (ii) (ii)	(A) (b) (i) (d) (iv)	(B) (ii) (i)	(C) (iv) (ii)	(D) (iii) (iii)
Ans.	(a)							
86.	The pai	r of ele	ectron	in the	e given car	banic	n, CH	$T_3 C \equiv C^{\Theta}$
	is prese (a) 2p (c) sp ²	ent in	whic	h of tl	he followi (b) sp ³ (d) sp	ng or [/	bitals: AIPM1	2016]

 CHEMICA
 H.O.: 2/2-B, Kasturba Gandhi Marg, Near Mayohall Crossing, Kutchery Road , Prayagraj

 POINT
 Mob.: 9839206708, 9984889076

II- σ & π BONDS How many σ and π -bonds are in SO₄²⁻? [RPMT] 11. The number of Cl = O bonds in perchloric acid is: 1. 4,2 (b) 3, 2 3.00 (b) 4.00[JEE Main 2020] (a) (a) 4,3 (c) (d) none of these (c) 7.00 (d) 11.00 Ans. (a) Ans. (a) The number of bonds between sulphur and oxygen 2. 12. Which of the following has $p\pi$ -d π bonding ? atoms in $S_2O_8^{2-}$ and the number of bonds between (b) SO_3^{2-} [Punjab PMET] NO_3^- (a) sulphur and sulphur atoms in rhombic sulphur, [JEE Main 2020] BO_3^{3-} CO_3^2 respectively. are (c) (b) 8 and 8 (a) 4 and 6 Ans. (b) (c) 4 and 8 (d) 8 and 6 13. Different structures generated due to rotation about, Ans. (b) C-C axis, of an organic molecule, are the examples The isoelectronic set of ions is [JEE Main 2019] 3. [J&K CET] of $F^{-}, Li^{+}, Na^{+}, Mq^{+}$ (b) $N^{3-}, Li^+, Mg^{2+} and O^{2-}$ (a) (a) geometrical isomerism (b) conformational isomerism $Li^{3+}, Na^+, O^{2-}andF^-$ (d) $N^{3-}, O^{2-}, F^{-} and Na^{+}$ (c) optical isomerism (c) Ans. (d) (d) structural isomerism Benzoic acid contains [CPMT] 4. Ans. (b) 15 σ and 2 π -bonds (b) 15 σ and 4 π -bonds (a) 14. Orbital interaction between the σ -bonds of a 14 σ and 4 π -bonds (d) 13 σ and 4 π -bonds (c) substituent group and a neighbouring π -orbital is Ans. (b) known as [Kerala CEE] hyperconjugation (a) inductive effect (b) How many bonds are there in 2 5. steric effect (c) (d) dipole-dipole interactions (a) 14 σ, 8 π e (b) 19 σ, 8 π e [RPMT] Ans. (a) 19 σ, 4 π e (c) (d) $14 \sigma, 2 \pi e$ 15. Hyperconjugation involves overlap of the following Ans. (b) orbitals [IIT JEE] Enolic form of acetone has [CPMT] 6. (a) σ-σ (b) $\sigma - \pi$ 8σ , 1π , 2 lone pairs (b) 9σ , 2π , 1 lone pairs (a) (c) $\pi - \pi$ (d) $\pi - \pi$ 8σ , 2π , 1 lone pairs (d) 9σ , 1π , 2 lone pairs (c) Ans. (b) Ans. (d) 16. Match the orbital overlap figures shown in List-I 7. The number of π -bonds in the following compound with the description given in List-II and select the correct answer using the code given below the lists $O_2N - C \equiv C - NO_2$ is [DUMET] List-I List-II (a) 2 (b) 3 4 (d) 1 (c) Ans. (c) 1. p-d π antibonding In $[Ag(CN)_2]^{2-}$, the number of π bonds is 8. [AIIMS] (b) 3 (a) 2 4 (d) 6 (c) Ans. (c) 2. d-d σ bonding 9. Which of the following overlaps leads to lateral bonding? [JCECE] p-orbital s-orbita s-orbital p-orbital (b) (a) 3. p-d π bonding p-orbital p-orbital orbita (c) (S)4. d-d σ antibonding Ans. (c) Code: 10. Number of electrons in the valence orbit of nitrogen Ρ Q R S Ρ Q R S in an ammonia molecule are [MHT CET] 3 (a) 2 1 3 (b) 4 1 2 4 8 (b) 5 (a) 2 3 4 (d) 4 1 3 2 (c) 1 (d) 7 (c) 6 (c) Ans. Ans. (a) H.O.: 2/2-B, Kasturba Gandhi Marg, Near Mayohall Crossing, Kutchery Road, Prayagraj CHEMICA [6] Mob.: 9839206708, 9984889076 POINT

[7]

[NEET 2019]

CH.

[NEET 2019]

[Kerala CEE]

[AFMC]

[CBSE AIPMT]

С	hemistry by : Er. S.K. Singl	n (B.Tech. M. Tech, M.N.N.I.T Alld.)
17.	Which molecule has hyd	rogen bonding? [Guj CET]
	(a) CH	(b) CH ₂ COOH
	(c) GeH	(d) H _a Te
Ans.	(b) ⁴	· · 2
18.	Glycerine contains	[Kerala CEE]
	(a) 1º carbon	(b) 2° carbon
	(c) 3° carbon	(d) both 1° and 2° carbon
Ans	(d)	(u) sour r and z carson
10	Which one among the	following does not have the
19.	hudrogon bond?	tonowing does not have the
	(a) Phonol	(b) Liquid NH
	(a) Henor	(d) Liquid MI_3
	(c) water	(a) Liquia HCI
Ans.	(a)	
20.	The hydrogen bond is	strongest in
	(a) O—H S	(b) S—H O
	(c) F—H F	(d) F—H O
Ans.	(c)	
21.	The maximum number	of hydrogen bonds a water
	molecule can form is	
	(a) 2	(b) 4
	(c) 3	(d) 1
Ans.	(b)	
22.	The order of strength o	of hydrogen bonds is
	(a) ClH Cl > NH N	1 > OHO > FHF
	(b) ClHCl < NH N	< OHO < FHF
	(c) $ClH Cl < NHN$	> OHO > FHF
	(d) ClHCl < NHN <	OHO > FHF
Ans.	(b)	
23	o-nitrophenol is more	volatile than n-nitronhenol
40.	It is due to	volatile than p introplicitoi.
	(a) Intromolecular 1	avdrogen bonding in o
	(a) intranoiecular i	intermeleculer budregen
	hending in a situat	intermolecular nyulogen
	(b) Intermolocylor	pilelioi
	(b) Intermolecular i	introme less les hadresses
	here the neighbor and	intramolecular hydrogen
	bonding in p-nitroj	
	(c) More stronger intra	molecular hydrogen bonding
	in o-nitrophenol as	s compared to p-nitrophenol
	(d) More stronger inter	molecular hydrogen bonding
	in o-nitrophenol as	compared to p-nitrophenol.
Ans.	(a)	
24.	Hydrogen bonding p	lays a central role in the
	following phenomena:	
	(a) Ice floats in water	
	(b) Higher Lewis basic	city of primary amines than
	tertiary amines in aqu	eous solutions
	(c) Formic acid is mor	e acidic than acetic acid
	(d) Dimerisation of ac	etic acid in benzene.
Ans.	(a, b, d)	
25.	Match the items given	in Column I with examples
	given in Column II.	
	Column I	Column II
	(i) Hydrogen bond	(a) C
	(ii) Resonance	(a) (b) LiF
	(iii) Ionic solid	(c) H
	(iv) Covalent solid	(d) HF
	(iv) covarent sond	(e) ()
	··· · · · · · · · · · · · · · · · · ·	

ns. (i)-(d); (ii)-(c); (iii)-(b), (iv)-(a) 5. (I) 1, 2-dihydroxybenzene

(II) 1, 3-dihydroxybenzene

(III) 1, 4-dihydroxybenzene

CHEMICA H.O.: 2/2-B, Kasturba Gandhi Marg, Near Mayohall Crossing, Kutchery Road, Prayagraj Mob.: 9839206708, 9984889076

[8]

(IV) hydroxybenzene Ans. (c) The increasing order of boiling points of above 6. The units of dipole moment is mentioned alcohols is: (IIT 2006) (a) esu (b) C-m (a) I < II < III < IV(b) I < II < IV < III(d) S-m (c) pascal (c) IV < I < II < III(d) IV < II < I < IIIAns. (b) Ans. (c) 7. The molecule which has zero dipole moment is 27.The maximum possible number of hydrogen bonds, (b) NF (a) CH₂Cl a water molecule can form is: (IIT 1992) BF, (d) ClO (c) (a) 2 (b) 4 Ans. (c) (c) 3 (d) 1 8. Non-zero dipole moment is shown by Ans. (b) (a) CCl (b) CO 28. Which of the following is soluble in water? (IIT 1980) (b) C₀H₂OH (a) CS (c) CCl_{a} (d) CHCl₂ Ans. (b) (c)H_oO 29. Which one of the following statements about water is FALSE? (JEE MAIN 2016) (a) Water can act both as an acid and as a base. Ans. (c) (b) There is extensive intramolecular hydrogen bonding in the condensed phase. 9. Dipole moment of (c) Ice formed by heavy water sinks in normal water. (d) Water is oxidized to oxygen during photosynthesis. Ans. (b) **IV-DIPOLE MOMENT** If AB, molecule is a polar molecule, a possible geometry of AB_4 is [JEE Main 2020] moment of (b) square planar square pyramidal (a) rectangular planar (d) tetrahedral (c) (a) 1.5 D (b) 2.35 D Ans. (a) H_0O is dipolar, whereas BeF_2 is not. It is because 1 D (d) 3 D (c) the electronegativity of F is greater than (a) Ans. (a) that of O. [Manipal] 10. Dipole moments of HCl =1.03 D, HI = 0.38 D. Bond H₂O involves hydrogen bonding whereas (b) length of HCl = 1.3Å and HI = 1.6Å. The ratio of BeF_{a} is a discrete molecule. H₂O is linear and BeF₂ is angular (c)in HCl and HI is (d) H₂O is angular and BeF₂ is linear (a) 1.2:1(b) 2.7:1 Ans. (d) (c) 3.3:1 (d) 1:3.3 The correct decreasing order of dipole moment in Ans. (c) CH₂Cl, CH₂ Br and CH₂F is [DUMET] 11. $CH_{3}F > CH_{3}Cl > CH_{3}Br$ (a) highest dipole moment is $CH_{F} > CH_{Br} > CH_{Cl}$ (b) (a) CO_2 (b) BF. (c) $CH_{2}Cl > CH_{2}F > CH_{3}Br$ SO₂ (c) $CH_{a}Cl > CH_{a}Br > CH_{a}F$ (d) Ans. (c) Ans. (c) 12. In the given structure of a compound, the correct possess dipole moment ? various bond moments direction involving are shown CO_2 , SO_2 (a) as [DUMET] (c) H_2O, SO_2 $Br = N = CH_2 = SiH_2 = CH_2 = O = CH_3$ Ans. (c) (a) 13. $Br = N = CH_2 = SiH_2 = CH_2 = O = CH_3$ (b) (I) toluene, (II) m-dichlorobenzene, $Br = N = CH_2 = SiH_2 = CH_2 = O = CH_3$ (c) (III) o-dichlorobenzene and (IV) p-dichlorobenzene is $Br = N = CH_2 = SiH_2 = CH_2 = O = CH_3$ (d) IV < II < I < III(a) I < IV < II < III(c) Ans. (c) Ans. (c) Which of the following fluoride of xenon has zero The correct order of dipole moments for NH₂, H₂O 14. dipole moment ? [AMU] and CO₂ molecule is XeF (b) XeF (a) $NH_{2} > H_{0}O > CO_{1}$ (a) (b) $CO_0 > NH_0 > H_0O$ (c)XeF (d) XeF CHEMICA H.O.: 2/2-B, Kasturba Gandhi Marg, Near Mayohall Crossing, Kutchery Road, Prayagraj

Mob.: 9839206708, 9984889076

1.

2.

3.

4.

POINT

Chemistry by : Er. S.K. Singh (B.Tech. M. Tech, M.N.N.I.T Alld.)

is 1.5 D. The dipole

[CPMT]

[JCECE]

[OJEE]

[WB JEE]

fraction of an electric charge, e existing on each atom [EAMCET]

- Among the following, the molecule possessing in [J&K CET]
 - (d) Trans-2-butene
- In which of the following pairs, both molecules [CPMT] (b) BCl₃, PCl₃
 - (d) CO_2 , CS_2
- The correct order of decreasing dipole moment of

 - [BHU] (b) IV < I < II < III
 - (d) IV < I < III < II
 - - [9]

[EAMCET]

	(c) $H_2O > CO_2 > NH_3$	(d)	$H_{2}O > 1$	$NH_3 > CO_2$	
Ans.	(a)				
15.	The dipole moment of l	HBr i	s 1.6 ×	10^{-30} C-m and	
	interatomic spacing is 1 Å	. The	percent	ionic character	
	of HBr is		- 	Haryana PMT]	Ans.
	(a) 7	(b)	10		26.
	(c) 15	(d)	27		
Ans.	(b)				
6.	Which has highest dipol	le mo	ment?		
	н		H ₃ C	∠H	
	(a) $\sum C=O$	(b)		$C=C \leq_{H}$	
	H ^r		1130	11	
	$H > C = C < CH_3$	(1)		$\Gamma = C C H_3$	Ans.
	(c) H_{3C}	(a)	H ₃ C	Cl	27.
Ans.	(a)				
17	Which of the following h	185 ZE	ero dinol	e moment?	
	(a) CH Cl	(b)	NH	[Manipal]	Ans.
	(c) CH_{2}^{-2}	(d)	PH	[F]	28.
Ans.	(a) 4	()	3		
	Dipole moment is shown	n by		[Manipal]	
	(a) cis-1, 2-dichloro et	thene		1 . 1.1	
	(b) trans-1, 2-dichloro	ethe	ne		Ans
	(c) trans-1, 2-dichloro	-2-pe	ntene		20 20
	(d) both (a) and (c)				49.
\ns.	(d)				
19.	The molecule having la	rgest	dipole n	noment among	Ans
	the following is			[RPMT]	30
	(a) CHI ₃	(b)	CH_4		50.
	(c) CHCl ₃	(d)	CCl_4		
Ans.	(c)				
20.	Which of the following wo	ould h	lave a pe	rmanent dipole	
	moment ?			[CBSE AIPMT]	A
	(a) BF_3	(b)	SiF_4		Ans. 31
	(c) SF_4	(d)	XeF ₄		51.
Ans.	(c)				
21.	The dipole moment of H_2	S is 0	.95 D. If	the bond angle	Ans.
	is 97°, the S-H bond m	omen	t would	be $(\cos 48.5 =$	54.
	(.662)	(1-)	0 ((0)	[Kerala CEE]	
	(a) 0.95 D	(a) (b)	0.002 L	,	
1		(u)	0.12 D		Ans
1115.	Which of the fellowing	m -1-	oulca 1-	an zozo dinala	33.
)')	winch of the following	111016	cuies n	as zero urpore	
22.	moment 2			[FAMCET]	
22.	moment ?	(b)	HC1	[EAMCET]	
22.	moment ? (a) BeCl ₂ (c) NH	(b)	HCl H O	[EAMCET]	
22.	moment ? (a) BeCl ₂ (c) NH ₃ (a)	(b) (d)	HCl H ₂ O	[EAMCET]	
22. Ans.	moment ? (a) BeCl ₂ (c) NH ₃ (a) The geometry of H S and	(b) (d)	HCl H ₂ O dipole m	[EAMCET]	Ans.
22. Ans. 23.	moment ? (a) $BeCl_2$ (c) NH_3 (a) The geometry of H_2S and (a) angular and non-77	(b) (d) d its o	HC1 H ₂ O dipole m	[EAMCET] oment are Harvana PMT]	Ans. 34.
22. Ans. 23.	moment ? (a) $BeCl_2$ (c) NH_3 (a) The geometry of H_2S and (a) angular and non-ze (b) angular and zero	(b) (d) d its o ero	HC1 H ₂ O dipole m	[EAMCET] oment are Haryana PMT]	Ans. 34.
Ans. 23.	moment ? (a) BeCl ₂ (c) NH ₃ (a) The geometry of H ₂ S and (a) angular and non-zer (b) angular and zero (c) linear and non-zer	(b) (d) d its o ero	HC1 H ₂ O dipole m	[EAMCET] oment are Haryana PMT]	Ans. 34.
Ans. 23.	moment ? (a) $BeCl_2$ (c) NH_3 (a) The geometry of H_2S and (a) angular and non-zer (b) angular and zero (c) linear and non-zer (d) linear and zero	(b) (d) d its o ero	HC1 H ₂ O dipole m	[EAMCET] oment are Haryana PMT]	Ans. 34. Ans.
4ns. 23.	moment ? (a) $BeCl_2$ (c) NH_3 (a) The geometry of H_2S and (a) angular and non-zer (b) angular and zero (c) linear and non-zer (d) linear and zero (a)	(b) (d) d its o ero o	HC1 H ₂ O dipole m	[EAMCET] oment are Haryana PMT]	Ans. 34. Ans. 35.
Ans. 23. Ans. 24.	moment ? (a) BeCl ₂ (c) NH ₃ (a) The geometry of H ₂ S and (a) angular and non-zer (b) angular and zero (c) linear and non-zer (d) linear and zero (a) Which bond angle θ we	(b) (d) d its o ero o	HCl H ₂ O dipole m	[EAMCET] oment are Haryana PMT] the maximum	Ans. 34. Ans. 35.
Ans. 23. Ans. 24.	moment ? (a) BeCl ₂ (c) NH ₃ (a) The geometry of H ₂ S and (a) angular and non-zer (b) angular and zero (c) linear and non-zer (d) linear and zero (a) Which bond angle θ we dipole moment for the f	(b) (d) d its o ero o uld r riator	HCl H_2O dipole m	[EAMCET] oment are Haryana PMT] the maximum cule YXY?	Ans. 34. Ans. 35.
4ns. 23. 4ns. 24.	moment ? (a) BeCl ₂ (c) NH ₃ (a) The geometry of H ₂ S and (a) angular and non-zer (b) angular and zero (c) linear and non-zer (d) linear and zero (a) Which bond angle θ we dipole moment for the t	(b) (d) d its o ero o uld r riator (b)	HCl H ₂ O dipole m	[EAMCET] oment are Haryana PMT] the maximum cule YXY?	Ans. 34. Ans. 35.
Ans. 23. Ans. 24.	moment ? (a) BeCl ₂ (c) NH ₃ (a) The geometry of H ₂ S and (a) angular and non-zer (b) angular and zero (c) linear and non-zer (d) linear and zero (a) Which bond angle θ we dipole moment for the t (a) $\theta = 90^{\circ}$ (c) $\theta = 160^{\circ}$	(b) (d) d its d ero o vuld r riator (b) (d)	HC1 H ₂ O dipole m esult in nic mole $\theta = 120$ $\theta = 180$	[EAMCET] oment are Haryana PMT] the maximum coule YXY?	Ans. 34. Ans. 35.
22. Ans. 23. Ans. 24.	moment ? (a) BeCl ₂ (c) NH ₃ (a) The geometry of H ₂ S and (a) angular and non-zer (b) angular and zero (c) linear and zero (d) linear and zero (a) Which bond angle θ we dipole moment for the t (a) $\theta = 90^{\circ}$ (c) $\theta = 160^{\circ}$ (a)	(b) (d) d its o ero o vuld r riator (b) (d)	HC1 H ₂ O dipole m esult in nic mole $\theta = 120$ $\theta = 180$	[EAMCET] oment are Haryana PMT] the maximum cule YXY?	Ans. 34. Ans. 35. Ans.
Ans. 23. Ans. 24. Ans. 25	moment ? (a) BeCl ₂ (c) NH ₃ (a) The geometry of H ₂ S and (a) angular and non-zer (b) angular and zero (c) linear and zero (d) linear and zero (a) Which bond angle θ wo dipole moment for the t (a) $\theta = 90^{\circ}$ (c) $\theta = 160^{\circ}$ (a) In a polar molecule, the	(b) (d) d its o ero o vuld r rriator (b) (d)	HC1 H ₂ O dipole m esult in nic mole $\theta = 120$ $\theta = 180$	[EAMCET] oment are Haryana PMT] the maximum cule YXY? ¹⁰ [CPMT]	Ans. 34. Ans. 35. Ans. 36.

(b)

The compound with no dipole moment is

hall Crossing, Kutchery Road, Prayagraj Mob.: 9839206708, 9984889076 POINT

[10]

Which one of the following is expected to have minimum boiling point? (a) n-Butane (b) n-Pentane (c) 2-Methylbutane (d) 2,2-Dimethylpropane Ans. (d) 5. Ans. (d) When cyclohexane is poured on water, it floats, 13. because : (a) cyclohexane is in 'boat' form (b) cyclohexane is in 'chair' form (c) cyclohexane is in 'crown' form (d) cyclohexane is less dense than water Ans. (d) 6. The boiling point of the three isomers of pentane, namely, n-pentane, isopentane and neopentane follows the order (a) n-pentane > isopentane > neopentane (b) n-pentane > neopentane > isopentane Ans. (b) (c) neopentane > isopentane > n-pentane (d) neopentane > n-pentane > isopentane Ans. (a) 7. The increasing order of boiling point of the given 1. alcohols is (a) 1-pentanol > 3-methyl-2-butanol > 2-methyl-2butanol (b) 1-pentanol > 2-methyl-2-butanol > 3-methyl-2-Ans. (b) butanol 2. (c) 3-methyl-2-butanol > 2-methyl-2-butanol > 1pentanol (d) 2-methyl-2-butanol > 3-methyl-2-butanol > 1pentanol Ans Ans. (a) 3. 8. Which of the following sequences regarding the acidic nature of alcohols is correct? (a) $CH_{2}OH > 1^{\circ} > 2^{\circ} > 3^{\circ}$ (b) $CH_{3}OH < 1^{\circ} < 2^{\circ} < 3^{\circ}$ Ans. (b) (c) $1^{\circ} > CH_{3}OH > 2^{\circ} < 3^{\circ}$ 4. (d) $1^{\circ} < CH_{3}OH < 2^{\circ} < 3^{\circ}$ Ans. (a) 9. Match the hydrocarbons in Column I with the boiling points given in Column II Column I Column II (i) n-Pentane (a) 282.5 K Ans. (a) (ii) Isopentane (b) 309 K 5. (c) 301 K (iii) Neopentane Ans. (i)-(b); (ii)-(c); (iii)-(a) 10. The compound with highest boiling point is (a) 2-methyl butane (IIT-1982) (b) n-pentane Ans. (d) (c) 2, 2-dimethyl propane 6. (d) n-hexane (d) Ans. 11. The highest boiling point is expected for (IIT-1986) (b) n-octane (a) iso-butane Ans. (b) (c) 2, 2, 3, 3-tetramethyl butane 7. (d) n-butane Ans. (b) 12. Assertion: Among isomeric pentanes, 2, 2dimethylpentane has the highest boiling point **Reason:** Branching does not affect the boiling point. Ans. (b)

- (a) If both assertion and reason are true, and reason is the true explanation of the assertion(b) If both assertion and reason are ture, but reason is
- not the true explanation of the assertion. (c) If assertion is ture, but reason is false.
- (d) If both assertion and reason are false.
- The correct order of boiling points of 2,2-dimethylpropane, 2-methylbutane and n-pentane is
 - (a) n-pentane > 2, 2-dimethylpropane > 2methylbutane (Kerala Pet 2011)
 - (b) n-pentane > 2-methylbutane > 2, 2dimethylpropane
 - (c) 2, 2-dimethylpropane > 2-methylbutane > npentane
 - (d) 2-methylbutane > n-pentane > 2, 2dimethylpropane
 - (e) 2-methylbutane > 2, 2-dimethylpropane > npentane

VI-REACTIVITY OF HALOGEN & HYDROGEN

- The order of reactivity of halogens towards halogenation of alkanes is
 - (a) $F_2 > Br_2 > Cl_2$ (b) $F_2 > Cl_2 > Br_2$ (c) $Cl_2 > F_2 > Br_2$ (d) $Cl_2 > Br_2 > F_2$

(C)	$\operatorname{Cl}_2 > \operatorname{F}_2 > \operatorname{Br}_2$	(d) $Cl_2 > Br_2 > F_2$

	The	chlorination of an	alkane	e involves
	(a)	Cl free radicals	(b) (Cl ⁺ species
	(c)	Cl ⁻ species	(d) (CH₄ free radicals
•	(a)			·
	The	reactivity of hydrog	en aton	n in an alkane tow

The reactivity of hydrogen atom in an alkane towards substitution by bromine atom is

- (a) $1^{\circ}H > 2^{\circ}H > 3^{\circ}H$ (b) $1^{\circ}H < 2^{\circ}H < 3^{\circ}H$
- (c) $1^{\circ}H > 2^{\circ}H < 3^{\circ}H$ (d) $1^{\circ}H < 2^{\circ}H > 3^{\circ}H$
- 4. Bromination of an alkane as compared to chlorination proceeds
 - (a) at a slower rate (b) at a faster rate
 - (c) with equal rates
 - (d) with equal or different rate depending upon the temperature
 - Chlorination of n-butane produces
 - (a) 1-chlorobutane as the chief product
 - (b) 2-chlorobutane as the chief product
 - (c) 1-chlorobutane more than 2-chlorobutane
 - (d) 2-chlorobutane more than 1-chlorobutane
- Which of the following sequences regarding relative stability of free radicals is correct?
 - (a) $3^{\circ} < 2^{\circ} < 1^{\circ}$ (b) $3^{\circ} > 2^{\circ} > 1^{\circ}$
 - (c) $3^{\circ} > 2^{\circ} < 1^{\circ}$ (d) $3^{\circ} < 2^{\circ} > 1^{\circ}$
- Which of the following sequences regarding ease of abstraction of hydrogen atom is correct?

(a) $3^{\circ} < 2^{\circ} < 1^{\circ}$ (b) $3^{\circ} > 2^{\circ} > 1^{\circ}$

(c) $3^{\circ} < 2^{\circ} > 1^{\circ}$ (d) $3^{\circ} > 2^{\circ} < 1^{\circ}$

[12]

CHEMICAH.O.: 2/2-B, Kasturba Gandhi Marg, Near Mayohall Crossing, Kutchery Road , Prayagraj
Mob.: 9839206708, 9984889076

Chemistry by : Er. S.K. Singh (B.Tech. M. Tech, M.N.N.I.T Alld.)

[13]

(b) SO₂, NO

(d) CO_2 , CO_2

Ans.

12.

13.

14.

15.

16.

17.

18.

19.

Ans.

(a) SO_2 , NO_2

(c) SO_2 , CO_2

(d)

Chemistry by : Er. S.K. Singh (B.Tech. M. Tech, M.N.N.I.T Alld.)

Acidic hydrogen is present in (IIT-1985) (b) ethene (d) ethane

The compound that undergoes decarboxylation most readily under mild condition is (JEE Main 2012)

- The compound that does not liberate CO₂, on treatment with aqueous sodium bicarbonate (JEE Advance 2013)
 - (b) benzenesulphonic acid
 - (d) carbolic acid (Phenol)
- Assertion : Acetylene on treating with NaNH₂ gave sodium acetylide and ammonia **Reason:** sp-Hybridized carbon atoms of acetylene are considerably electronegative.
- If both assertion and reason are true, and reason is the true explanation of the assertion
- If both assertion and reason are ture, but reason is not the true explanation of the assertion.
- If assertion is ture, but reason is false.
- If both assertion and reason are false.

X-COMPARISON OF ACIDIC STRENGTH

- Among the following compounds, the most acidic is [IIT JEE]
 - p-hydroxybenzoic acid
 - o-hydroxybenzoic acid
- The correct acidity order of the following is

(a)	(111) >	(1) > (1)	(I) (D)	(1) > (1)	III) > (I	u) > (II)
(c)	(III) >	(II) > (I) >	(IV) (d)	(II) > (II)	II) > (IV	V > (I)

What is the decreasing order of strength of the bases OH^- , NH_2^- , $HC \equiv C$ and $CH_3CH_2^-$? (a) $CH_{3}^{-}CH_{2}^{-} > NH_{2}^{-} > H-C \equiv C^{-2} > OH^{-}$ (b) $H-C \equiv C^{-} > CH_{3}^{-}-CH_{2}^{-} > NH_{2}^{-} > OH^{-}$ (c) $OH^- > NH_2^- > HC \equiv C^- > CH_3 - CH_2^-$ (d) $\operatorname{NH}_2^- > \operatorname{H}_2^- = \operatorname{C}_2^- > \operatorname{OH}_2^- > \operatorname{CH}_3^- - \operatorname{CH}_2^-$

CHEMICA H.O.: 2/2-B, Kasturba Gandhi Marg, Near Mayohall Crossing, Kutchery Road, Pray Mob.: 9839206708, 9984889076	yagraj [16

Chemistry by : Er. S.K. Singh (B.Tech. M. Tech, M.N.N.I.T Alld.)

[DUMET]

[Manipal]

4. Which of the following orders regarding acid strength (c) is correct? (a) $CH_3COOH > CH_3CH_2OH > HC \equiv CH$ Ans. (a) (b) $CH_{3}COOH > HC \equiv CH > CH_{3}CH_{0}OH$ 7. (c) $HC \equiv CH > CH_3COOH > CH_3CH_2OH$ (d) $HC \equiv CH > CH_3CH_2OH > CH_3COOH$ (a) Ans. (a) (c) Which of the following orders regarding base 5 strength is correct? A (a) $CH_3COO^- > CH_3CH_3O^- > HC \equiv C^-$ 8. (b) $CH_{3}COO^{-} < CH_{3}CH_{2}O^{-} < HC \equiv C^{-}$ (c) $HC \equiv C^- > CH_3COO^{-2} > CH_3CH_2O^{-1}$ (d) $HC \equiv C^- > CH_3CH_2O^- > CH_3COO^{-1}$ (b) (c) Ans. (a) (d) For the following reactions 6. $HC \equiv CH \xrightarrow[-catalyst]{} H_2C = CH_2 \quad \Delta H_1^o; H_2C = CH_2 \xrightarrow[-catalyst]{} H_2C = CH_2$ Ans. (c) 9 $CH_3 - CH_3 \quad \Delta H_2^o$ which of the following facts is expected to be correct? (b) $|\Delta H_1^o| > |\Delta H_2^o|$ (a) $|\Delta H_1^o| = |\Delta H_2^o|$ (c)(c) $|\Delta H_1^o| < |\Delta H_2^o|$ (d) $|3\Delta H_1^o| = |2\Delta H_2^o|$ (d) Ans. (b) From the following reactions 7. Ans. (c) $HC \equiv CH + LiNH_2$ \longrightarrow $NH_3 + HC \equiv CLi$ 10. $NH_3 + R^- \implies NH_2^- + RH$ predict which of the following orders regarding base strength is correct? (a) $R^- < NH_2^- < HC \equiv C^-(b) R^- > NH_2^- > HC \equiv C^-(c) R^- > NH_2^- < HC \equiv C^-(d) R^- < NH_2^- > HC \equiv C^-$ Ans. (b) **XI-GENERAL TERMS** (a) The compound containing coordinate bond is[AFMC] 1. (a) SO₂ (b) O₂ H₂ŠO₄ (d) All of these (c) Ans. (d) 2. Which of the following substance has the highest [VMMC] melting point? (a) BaO (b) MgO (c) KC1 (d) NaCl (c) Ans. (a) 3. HCl molecule contains [AFMC] (a) ionic bond (b) covalent bond Ans. (c) (c) hydrogen bond (d) coordinate bond 11. Ans. (b) 4. Which of the following does not have coordinate (b) bond? [CPMT] (c)(a) SO (b) HNO₂ H₂SO₂ (d) HNO (d) (c) Ans. (c) Ans. (d) 12. 5. Which compound is most covalent ? [AFMC] LiC1 (b) LiF (a) (c) LiBr (d) LiI (a) (b) Ans. (d) 6. Which of the following represents the Lewis structure (c) of N_2 molecule ? [KCET] (b) $\overset{\times}{\overset{\times}{}}\overset{\times}{\overset{\times}{N}}\overset{\times}{=}\overset{\times}{\overset{\times}{\overset{\times}{N}}}$ Ans. (c) (a) ${}_{\times}^{\times}N \equiv N_{\times}^{\times}$ 13.

 $N = N_{u}^{\times}$

Which of the following is polar ?

 I_3^- (b) CO_{2}^{2-}

XeF₄ (d) PF.

Metallic bond is

- similar to ionic bond (a)
 - similar to covalent bond
 - neither similar to ionic nor covalent bond
 - formed by movement of positive charged spheres in a sea of electrons.
- Malleability and ductility of metals can be accounted due to [KCET]
 - (a) the presence of electrostatic force
 - the crystalline structure in metal (b)
 - the capacity of layers of metal ions to slide over the other.
 - the interaction of electrons with metal ions in the lattice.
- Which one of the following graphs represent the correct order of bioling points (b.p) of ethane (1), ethyl alcohol (2) and acetic acid (3)? [EAMCET]

- The comparatively high boiling point of HF is due to high reactivity of fluorine [MHT CET] (a)
 - small size of hydrogen atom
 - formation of hydrogen bonds and consequent association
 - high IE of fluorine
- What is the energy gap between valence band and conduction band in crystals of insulators? [Guj. CET] Very small
 - Both the bands are overlapped with each other
 - Very large (d) Infinite
- The energy gaps (E_{α}) between valence band and conduction band for diamond, silicon and germanium

H.O.: 2/2-B, Kasturba Gandhi Marg, Near Mayohall Crossing, Kutchery Road, Prayagraj Mob.: 9839206708, 9984889076

[17]

[AIIMS] are in the order $\begin{array}{l} E_{g} \mbox{ (diamond) } > E_{g} \mbox{ (silicon) } > E_{g} \mbox{ (germanium) } \\ E_{g} \mbox{ (diamond) } < E_{g} \mbox{ (silicon) } < E_{g} \mbox{ (germinium) } \\ E_{g} \mbox{ (diamond) } = E_{g} \mbox{ (silicon) } = E_{g} \mbox{ (germinium) } \\ E_{g} \mbox{ (diamond) } > E_{g} \mbox{ (germanium) } > E_{g} \mbox{ (silicon) } \end{array}$ (a) (b) (c) (d) Ans. (a) 14. Synthetic petrol is prepared by [Kerala CEE] (a) fisher-tropsch process (b)wurtz reaction distillation (c)fractional distillation (d) Ans. (a) 15. The number of primary, secondary, tertiary and quaternary carbons in neopentane are respectively, [Kerala CEE] (b) 5, 0, 0 and 1 (a) 4, 3, 2 and 1 4, 0, 0 and 1 (d) 4, 0, 1 and 1 (c) Ans. (c) 16. Benzene does not undergo addition reactions easily because [BVP] (a) it has a cyclic structure double bonds in it are very strong (b) resonance stabilized system is to be (c) preserved it has six hydrogen atoms (d) Ans. (c) A fruity smell is obtained by the reaction of ethanol 17. with [BCECE] CH₃COCH₃ (a) (b) PC1. CH,COOH (c) (d) CH₂CHO Ans. (c) 18. BCl_3 is a planar molecule, while NCl_3 is pyramidal, because [WB JEE] N-Cl bond is more covalent than B-Cl bond (a) nitrogen atom is smaller than boron atom (b) (c) B-Cl bond is more polar than N-Cl bond (d) BCl₂ has no lone pair of electrons but NCl₂ has a lone pair of electrons Ans. (d) 19. Metallic lusture is explained by [DCE] (a) diffusion of metal ions (b) oscillation of loose electrons (c) excitation of free protons (d) existence of bcc lattice Ans. (b) 20. The general formula C_nH_{2n}O₂ could be for open chain [AIEEE] (b) carboxylic acids diketones (a) (c) diols (d) dialdehydes Ans. (b) 21.What will be the octane number of best fuel? 80 (b) 81 [MP PET] (a) 74 (d) 65 (c) Ans. (d) 22.TEL is a compound used as [RPET] (a) antibiotic (b) antiseptic antiknocking (d) antioxidant (c) (c) Ans. [MP PET] 23 Natural gas is a mixture of $CO + H_{c}$ $CO + CO_{c}$ (b) (a) CHEMICA H.O.: 2/2-B, Kasturba Gandhi Marg, Near Mayohall Crossing, Kutchery Road, Prayagraj

POINT

U	Temistry by . Er. S.K. Singii (B. Tech. M. Tech, M.N.N.I. I Alid.)
Ans.	(c) $CO + N_2$ (d) $CH_4 + C_2H_6 + C_3H_8$ (d)
24.	The types of bonds present in $CuSO_4.5H_2O$ are only (a) Electrovalent and covalent
	(b) Electrovalent and coordinate covalent
	(c) Electrovalent covalent and coordinate covalent
	(d) Covalent and coordinate covalent
Ans.	(c)
25.	The molecule having one unpaired electron is
	(a) NO (b) CO (1) (1) (1)
Ane	(c) CN (d) O_2
26.	Which of the following resonating structures is not
	correct for CO_2 ?
	(a) $: \mathbf{O} = \mathbf{C} = \mathbf{O}:$ (b) $: \mathbf{O} - \mathbf{C} = \mathbf{O}:^+$
	(c) $\overset{+}{\cdot} \overset{\bullet}{\circ} = C = \overset{\bullet}{\circ} \overset{-}{\cdot}$ (d) $\overset{+}{\cdot} \overset{\bullet}{\circ} = C = \overset{\bullet}{\circ} \overset{-}{\cdot}$
Ans	(a) (b) = 0 = 0; (b) = 0 (c)
27.	The bond between two identical nonmetal atoms
	has a pair of electrons
	(a) Unequally shared between the two
	(b) Transferred fully from one atom to another
	(c) With identical spins
A	(d) Equally shared between them
$\Delta ns.$	$\begin{array}{c} \textbf{(a)} \\ \textbf{(b)} \\ \textbf{(b)} \\ \textbf{(c)} \\ (c)$
40.	(a) Only jonic
	(b) Covalent and coordinate
	(c) Only covalent
	(d) Covalent and ionic
Ans.	(b)
29.	The ion that is isoelectronic with CO is $(1) = O^{+}$
	(a) CN (b) O_2^+
Ans	$(\mathbf{c}) \mathbf{b}_2 \qquad \qquad (\mathbf{u}) \mathbf{N}_2$
30.	The octet rule is not obeyed by the molecule
	(a) CO_2 (b) H_2O
	(c) O_2^2 (d) CO
Ans.	(b)
31.	Most favourable conditions for the formation of ionic
	bonds are
	(a) Large cation and large anion
	(c) Small cation and small anion
	(d) Small cation and large anion
Ans.	(a)
32.	Which of the following combinations would lead to
	a covalent bond?
	(a) Electronegative element + electropositive
	element
	(b) Electronegative element + electronegative
	(c) Electronositive element + electronositive
	element
	(d) Inert gas + electropositive element.
Ans.	(b)
33.	The bonds present in N_2O_4 are
	(a) only ionic

(b) covalent and coordinate

Mob.: 9839206708, 9984889076

[18]

(d) covalent and ionic

Ans. (b)

- 34. Most favourable conditions to form a covalent bond is
 - (a) Large cation and small anion
 - (b) Large cation and large anion
 - (c) Small cation and small anion
 - (d) Small cation and large anion

Ans. (d)

- 35. Which of the following statements regarding valencebond method is not true?
 - (a) The molecule is considered to be the collection of atoms and then interactions between different atoms is considered
 - (b) For a molecule to be stable, the electrostatic attractions must predominate over the repulsions
 - (c) The potential energy of a diatomic molecule is less than the sum of potential energies of free atoms
 - (d) The net force of attraction acting on the atoms in a molecule is not zero

Ans. (d)

36. Arrange the halogens F_2 , Cl_2 , Br_2 , I_2 , in order of their increasing reactivity with alkanes (AIPMT 2010) (a) $I_2 < Br_2 < Cl_2 < F_2$ (b) $Br_2 < Cl_2 < F_2 < I_2$ (c) $F_2 < Cl_2 < Br_2 < I_2$ (d) $Br_2 < Cl_2 < F_2$

Ans. (a)

Which of the following is basic? (IIT-1980)
(a) CH₃CH₂OH
(b) H₂O₂
(c) HOCH₂CH₂OH
(d) CH₃COOH

Ans. (a)

- 38. Hydrogenation of benzoyl chloride in the presence of Pd on BaSO₄ gives (IIT-1992)
 (a) Benzyl alcohol (b) Benzaldehyde
 - (c) Banzoic acid (d) Phenol

Ans. (b)

 Match the compounds in Column I with their characteristic test(s)/reaction(s) given in Column II.

Column I

(A) $H_2 N - \overset{\oplus}{N} H_3 \overset{\Theta}{C} l$

Column II

- (p) Sodium fusion extract of the compound gives Prussian blue colour with FeSO₄
- (q) Gives positive FeCl₃ test

- (r) Gives white precipitate with AgNO₃
 (s) reacts with aldehydes to form the corresponding
- hydrazone derivative
- Ans. A-r,s; B-p,q; C-p,q,r; D-p
- 40. **Assertion :** Calcium carbide on hydrolysis gives ethylene.

Reason: Calcium carbide contains C⁴⁻ anions.

- (a) If both assertion and reason are true, and reason is the true explanation of the assertion
- (b) If both assertion and reason are ture, but reason is not the true explanation of the assertion.
- (c) If assertion is ture, but reason is false.
- (d) If both assertion and reason are false.
- **Ans. (d)** 41. Given:-

The enthalpy of the hydrogenation of these compounds will be in the order as:-

II > I (b) II > III > I> III (b) II > III > II> III (c) I > II > III > III

(c) II > I > III

Ans. (a)
42. The hottest region of Bunsen flame shown in the figure below is: [JEE MAIN 2016]

- (a) region 2 (c) region 4 **Ans. (a)**
- 43. The concentration of fluoride, lead, nitrate and iron in a water sample from an underground lake was found to be 1000 ppb, 40 ppb, 100 ppm and 0.2 ppm, respectively. This water is unsuitable for drinking due to high concentration of: [JEE MAIN 2016]
- (a) Lead (c) Iron
- (b) Nitrate (d) Fluoride

(b) region 3(d) region 1

(d) Flu

Ans. (b)

1.

- XII-BOND LENGTH
- Identify the incorrect statement related to PCl₅ from the following: [NEET 2019]
 - (a) Two axial P Cl bonds make an angle of 180° with each other

CHEMICA H.O.: 2/2-B, Kasturba Gandhi Marg, Near Mayohall Crossing, Kutchery Road, Prayagraj Mob.: 9839206708, 9984889076

[19]

XIII-CARBENE

- Cl bonds 1. Find out correct representation of singlet carbene: PCl_z molecule is non-reactive (c)Three equatorial P - Cl bonds make an angle of (d) (b) H C C H 120° with each other Ans. (c) (c) Both (a) and (b) (d) None of these The correct order of increasing bond length of C-H, C-O, Ans. (a) C-C and C=C is [CBSE AIPMT] 2. Find out correct representation of triplet carbene: (a) C-H < C-O < C-C < C=C(b)C-H < C=C < C-O < C-CC-C < C=C < C-O < C-H(c) (d) C-O < C-H < C-C < C=CAns. (b) The covalent bond length is the shortest in which 3. (d) None of these one of the following bonds ? [Kerala CEE] (a) C - O(b) C-CAns. (b) (c) $C \equiv N$ (d) O - H**XIV-BOND ANGLE** Ans. (d) The compound that has the largest H - M - H bond 1. angle (M = N, O, S, C) is [JEE Main 2020] 4. The C-H bond distance is the longest in [AFMC] (a) (b) $C_{2}H_{4}$ (a) H_0O (b) NH₂ C₂H₂ (c) $C_{2}H_{4}Br_{2}$ (d) $C_e H_e$ (c) H_oS (d) CH Ans. (d) Ans. (c) The bond length between C–C bond in sp² hybridised 5. 2. What is the correct order of decreasing bond angle? molecule is [BCECE] [VMMC] (a) 1.2 Å (b) 1.39 Å $NH_4^+ > NH_3 > NH_2^-$ (b) $NH_3 > NH_2^- > NH_4^+$ (a) (c) 1.33 Å (d) 1.54 Å $NH_{2}^{-} < NH_{3} > NH_{4}^{+}$ (d) $NH_{3} > NH_{4}^{+} > NH_{2}^{-}$ (c) Ans. (b) Ans. (a) 6. What is the increasing order of bond lengths of H–O–H bond angle $inH_{2}O$ is 104.5° and not 109°28' 3. bonds indicated as p,q,r and s in following compound? because of [CPMT] lone pair-lone pair repulsion (a)(b)lone pair-bond pair repulsion bond pair-bond pair repulsion (c)(a) p < q < r < s(b) q < r < s < p(c) s < q < r < p(d) shigh electronegative of oxygen (d) Ans. (d) Ans. (a) The bond order of individual carbon-carbon bonds 7. 4. The bond angle in AsH₂ is greater than that in in benzene is: (IIT 1981) (a) one (b) two [Punjab PMET] NH₂ (b) H_2O (a) (c) between one and two BC1 (d) none of these (c) (d) one and two, alternately Ans. (d) Ans. (c) Assertion: C-H bond in ethyne is shorter than C-8. 5 The bond lengths and bond angles in the molecules H bonds in ethene. of methane, ammonia and water are given below Reason: Carbon atom in ethene is sp hybridised 0 109 nm while it is sp^2 in ethyne. If both assertion and reason are true, and reason (a) is the true explanation of the assertion (b) If both assertion and reason are ture, but reason is not the true explanation of the assertion. The variation in bond angle is a result of (c) If assertion is ture, but reason is false. the increasing repulsion between hydrogen (i) (d) If both assertion and reason are false. atoms as the bond length length decreases Ans. (c) (ii) the number of non-bonding electron pairs 9. Which of the following has longest C-O bond length? in the molecule (Free C–O bond length in CO is 1.128 Å) (iii) a non-bonding electron pair having a [AIPMT2016] greater repulsive force than a bonding (a) Ni(CO)₄ (b) $[Co(CO)_4]^{\prime}$ [Kerala CEE] electron pair (c) [Fe(CO)]²⁻ (d) $[Mn(CO)_{6}]^{+}$ (i), (ii) and (iii) are correct (a) (c) H.O.: 2/2-B, Kasturba Gandhi Marg, Near Mayohall Crossing, Kutchery Road, Prayagraj CHEMICA Mob.: 9839206708, 9984889076 POINT

Axial P - Cl bonds are longer than equatorial P

(b)

[20]

[AIPMT 2016]

(b) $Cl_2 > Br_2 > F_2 > l_2$ (d) $F_2 > Cl_2 > Br_2 > I_2$

(b) (i) and (ii) only are correct (c) (ii) and (iii) only are correct (a) $I_2 > Br_2 > Cl_2 > F_2$ (c) $Br_2 > I_2 > F_2 > Cl_2$ (d) (iii) only is correct Ans. (b) Ans. (c) XVI-Co-planarity & Co-Linearity 6. In a regular octahedral molecule MX₆, the number of 1. X-M-X bonds at 180° is [Manipal] (a) $H_2C=C = CH_2$ three (a) (b) two (c) $H_0 C = C = O$ (c) six (d) four Ans. (a) Ans. (a) 2. 7. The C-O-H bond angle in ethanol is nearly (a) 90 (b) 107 (a) (d) 180 (c) 120 Ans. (b) 8. Consider the molecules CH₄,NH₃ and H₂O. Which of the given statement is false? (c) (a) The H-C-H bond angle in CH₄, the H-N-H bond Ans. (a, b) angle in NH₃, and the H-O-H bond angle in H₂O 3. are all greater than 90°. (b) The H–O–H bond angle in H₂O is larger than the the following : H-C-H bond angle in CH₄ (c) The H–O–H bond angle in H_2O is smaller than the H-N-H bond angle in NH₃ (d) The H–C–H bond angle in CH_4 is larger than the H-N-H bond angle in NH₃ [AIPMT 2016] Ans. (b) 9. Predict the correct order among the following (a) Lone pair - lone pair > lone pair - bond pair > bond pair - bond pair [AIPMT 2016] (b) Lone pair - lone pair > bon pair - bond pair > lone pair > bond pair (c) Bond pair - bond pair > lone pair - bond pair > Ans. (b) lone pair - lone pair (d) Lone pair - bond pair > bond pair - bond pair > lone pair - lone pair 1. Ans. (a) XV-BOND ENERGY 1. Arrange the following bonds according to their average bond energies in descending order [JEE Main 2020] C - Cl, C - Br, C - F, C - I C - F > C - Cl > C - Br > C - I(a) C - Br > C - I > C - Cl > C - F(b)(c) C - I > C - Br > C - Cl > C - FC - Cl > C - Br > C - I > C - FAns. (3) (d) Ans. (a) 2. 2. If enthalpy of atomisation for $Br_2(l)$ is x kJ/mol and the compound. bond enthalpy for Br_2 is y kJ/mol, the relation between them [JEE Main 2020] is x < y(b) doe not exist (a) (c) is x > y(d) is x = yAns. (c) 3. Strogest C-H bond is present in [RPMT] Ans. (5) ethane (b) ethene (a) (c) ethyne (d) CH₃OH 3. Ans. (C) Which of the following compounds possesses the C-H bond with the lowest bond dissociation energy? (a) Toluene (b) Benzene [AIIMS] n-pentane (d) 2,2-dimethyl propane (c) Ans. (a) Which one of the following orders is correct for the 5. bond dissociation enthalpy of halogen molecules? CHEMICA

There are three canonical structures of nahthalene. Examine them and find correct statement among

- (a) All C-C bonds are of same length
- (b) $C_1 C_2$ bond is shorter than $C_2 C_3$ bond
- (c) $C_1 C_2$ bond is larger than $C_2 C_3$ bond
- (d) None of the above

XVII-CONJUGATION

The purine hetrocycle occurs mainly in the structure of DNA. Identify number of 'N' atoms having localised lone pair of electron.

How many resonating structures are possible for

Find out number of compounds which are more stabilise in ionic structure, from following.

[21]

R.

(c) NaOH will react with

Ans. (3)

4. How many compounds from following exhibit d-orbital resonance.

Ans. (4)

5.

Among the following, find out number of ions or molecules that can show back bonding.

Ans. (5)

XVIII- ACIDIC HYDROGEN

1. Find out number of benzylic hydrogen in

Ans. (5)

2. Find out number of compounds which are more acidic than benzoic acid, from following.

Ans. (b)

Ans.

4.

XIX-SECONDARY FORCES

- Match the type of interaction in column A with the distance dependence of their interaction energy in column B: **A B**
 - (I) Ion-ion (a) $\frac{1}{r}$ (II) Dipole-dipole (b) $\frac{1}{r^2}$ (III) London dispersion (c) $\frac{1}{r^3}$ (d) $\frac{1}{r^6}$ [JEE Main 2020] (a) (I) - (b), (II) - (d), (III) - (c) (b) (I) - (a), (II) - (b), (III) - (d) (c) (I) - (a), (II) - (b), (III) - (c)
 - (d) (I) (a), (II) (b), (III) (c) (d) (I) - (a), (II) - (c), (III) - (d)
 - (a) (i) (a), (ii) (c), (iii)
 - The potential energy curve for the H_2 molecule as a function of internuclear distance is**[JEE Main 2020]**

distance

(c)
$$\underset{Cl}{Br}C = C \underset{Br}{Cl}$$
 (d) $Cl \longrightarrow Br$

26. Which of the following orbital overlaps is involved in the formation of the carbon-carbon single bond in the molecule $HC \equiv C - CH = CH_2$?

(a)
$$sp^3 - sp^3$$
 (b) $sp^2 - sp^3$ (c) $sp - sp^2$ (d) $sp^3 - sp^3$

- 27. Which of the following molecules possesses sp hybridized carbons only?
 - (a) 1, 3-Butadiyne (b) Propynenitrile
 - (c) Carbon suboxide (C_3O_2)
 - (d) All of these
- 28. Which of the following molecules contains all the three types of hybridized carbons: sp, sp^2 and sp^3 ? (a) Propadiene (b) 1, 3-Butadiene
 - (c) 1, 2-Butadiene (d) 1, 3-Butadiyne
- 29. Examine the following molecules for the hybridization states of carbons and answer the question given below:

(A)
$$CH_{3}CH_{2}CH_{2}CH_{3}$$
 (B) $CH_{3}CH = CHCH_{3}$

- (C) $CH_2 = CHC \equiv CH$ (D) $HC \equiv CH$ Which of the above molecules possesses more than one type of hybridized carbon?
- (a) B (b) D (c) B and C (d) C and D 30. The hybridization states of the carbon atom (1) and carbon atom (2) in the compound

$$N = \stackrel{1}{C} - \stackrel{2}{C} H = \stackrel{3}{C} H$$

are respectively

- (a) sp^2 and sp(b) sp^3 and sp
- (c) sp and sp^2 (d) sp and sp
- 31. Which of the following species (A), (B), (C) and (D) has an sp² hybridized carbon?

CH_3^+	CH_3^-	CH ₃	$:CH_2$				
(A)	(B)	(C)	(D)				
(a) A only	7	(b) A and B only					
(c) A and	C only	(d) A, C an	d D				

- 32. Which of the following possesses sp² hybridized carbons only?
 - (a) PhCH = CH_{a} (b) PhCH = CHPh
 - (c) Ph Ph (d) All of these
- 33. Which of the following molecules can adopt a planar shape? (a) Benzoic acid (b) Propenal
 - (c) Ethanedial (d) All of these
- 34. Which of the following arrangements gives the correct order of decreasing dipole moment values of CH₂Cl, CH₂Cl₂, CHCl₃ and CCl₄? (a) $\tilde{C}H_{3}Cl > CH_{2}Cl_{2} > CHCl_{3} > CCl_{4}$ (b) $CH_{2}Cl_{2} > CH_{3}Cl > CHCl_{3} > CCl_{4}$ (c) $CHCl_3 > CH_2Cl_2 > CH_3Cl > CCl_4$
- (d) $CHCl_3 > CH_3Cl^2 > CH_2Cl_2 > CCl_4$ Which of the following ions poss 35. only?

(a)
$$CH_2 = CH - CH_2^+$$
 (b) $CH_2 = CH - CH_2^+$

H -
$$CH_2^+$$
 (b) $CH_2 = CH - CH_2^-$
- CH_2^+ (d) All of these

36.

(c) $CH_{2} = C = O$ (d) HN = NH37. The carbon-carbon bond lengths of the following molecules follow the order: (a) $C_{2}H_{6} > C_{2}H_{4} > C_{6}H_{6} > C_{2}H_{2}$ (b) $C_2H_2 < C_2H_4 < C_6H_6 > C_2H_6$ (c) $C_2^2 H_6^2 > C_2^2 H_2^2 > C_6^6 H_6^6 > C_2^2 H_4^4$ (d) $C_2^2 H_4^2 > C_2^2 H_6^2 > C_2^2 H_2^2 > C_6^2 H_6^6$ The hydrogen bond is strongest in 38. (a) $O - H \cdots S$ (b) $S - H \cdots O$ (d) $F - H \cdots O$ (c) $F - H \cdots F$ 39. Which of the following has a trigonal planar shape? (b) CH_{3}^{+} (c) BF_3 (d) All of these (a) CH₃ 40. Which of the following represents the correct order of decreasing C - H bond lengths in the following molecules?

(a)
$$CH_4 > C_2H_4 > C_2H_6 > C_2H_2$$

(b) $C_2H_6 > CH_4 > C_2H_4 > C_2H_2$
(c) $CH_4 > C_2H_6 > C_2H_4 > C_2H_2$

- (d) $C_2H_2 > C_2H_4 > C_2H_6 > CH_4$
- 41. Which of the following molecules possesses a bond formed by the overlap of sp and sp^3 hybrid orbitals of carbon?
 - (a) $CH_3C \equiv CH$ (b) $CH_3CH = CHCH_3$
 - (c) $CH_2 = CHCH = CH_2$ (d) HC = CH
- 42. Which of the following is not a planar molecule?

(a)
$$CH_2 = C = CH_2$$
 (b) $CH_2 = C = C = CH_2$

(c)
$$CH_2 = C = O$$
 (d) $NCCH = CHCN$

43. Which of the following statements is not true about the resonance contributing structures of a resonance hybrid?

(a) Contributing structures contribute to the resonance hybrid in proportion of their energies (b) Equivalent contributing structures make the resonance very important.

(c) Contributing structures represent hypothetical molecules having no real existence.

(d) Contributing structures are less stable than the resonance hybrid.

44. Which of the following arrangements represents the correct order of increasing dipole moments of the compounds given below?

		Toluene	m-Dichlorobenzene				
		(I)	(II)				
		o-Dichlorobenzene	<i>p</i> -Dichlorobenzene				
esses sp ² carbons	bons 45.	(III)	(IV)				
		(a) $I < IV < II < III$	(b) $IV < I < II < III$				
		(c) $IV < I < III < II$	(d) $IV < II < I < III$				
$CH - CH_2^-$		Which of the following c	compounds has only one type				
		of hybridized carbon?					
		(a) Propadiene	(b) Propenenitrile				
these		(c) Propenal	(d) 1, 4-Pentadiene				

CHEMICA POINT

H.O.: 2/2-B, Kasturba Gandhi Marg, Near Mayohall Crossing, Kutchery Road, Prayagraj Mob.: 9839206708, 9984889076

[25]

[26]

, the bond

66		0.6	
69.	The numbers of σ and π bonds in o-xylene are	83.	What is the hybridization state of the nitrogen atom
	(a) 12σ and 3π (b) 18σ and 3π	1	(a) sp^2 (b) sp^3
	(c) 9σ and 3π (d) 15σ and 3π		(c) sp (d) No hybridization
70.	Which of the following molecules has three different	84.	Which of the following pairs does not represent the
	bond-angle values?	1	resonance contributors of the same species?
71	(a) CCI_4 (b) CH_2CI_2 (c) $CHCI_3$ (d) $HCHO$ The corbon atoms in allene (CH = C = CH) involve		() ()
11.	the hybridizations		(a) $CH_2 = CH^{\prime}$ and $\ddot{C}H_2 = CH^{\prime}$
	(a) sp^2 and sp^3 (b) sp^2 and sp		¢11
	(c) sp^3 and sp (d) sp^2 only		(b)
72.	The numbers of π bonds and σ bonds present in a		CH_2 CH_2 and H_2C — CH_2
	molecules of benzaldehyde are, respectively,		CH ₂ CH ₂
	(a) 4π and 13σ (b) 4π and 8σ		(c) $\int_{CH}^{2} CH - CH_{2}$ and $\int_{CH}^{2} CH = CH_{2}$
	(c) 4π and 14σ (d) 8π and 10σ		CH_2 CH_2
73.	When the hybridization state of a carbon atom		" Ö: " Ö:
	changes from sp^3 to sp^2 and finally to sp , the angle		(d) $CH_3 \rightarrow N_{1}$ and $CH_3 \rightarrow N_{2}$
	(a) decreases gradually (b) decreases considerably		NO: NO:
	(c) is not affected (d) increases progressively	85.	Which of the following is the weakest nucleophile?
74.	The numbers of σ and π bonds in 1-buten-3-yne are		(a) $C_2H_5O^-$ (b) $C_2H_5S^-$ (c) CH_3COO^- (d) CO_3^{2-}
	(a) 5σ and 5π (b) 7σ and 3π	86.	Which of the following is the weakest Lewis base?
	(c) 8σ and 2π (d) 8σ and 4π		(a) NH. (b) NF (c) NH^{-} (d) $CH O^{-}$
75.	In which of the following hybridizations does the	87	Which of the following is an ambidant muclear $h^{1/2}$
1.0.	interorbital angle have the highest value?	01.	which of the following is an amoldent nucleophile?
	(a) sp^3 (b) sp^2 (c) sp (d) sp^3d		(a) CH_3^- (b) OH^- (c) $C_2H_5O^-$ (d) NO_2^-
76.	Which of the following hydrocarbon groups designated	88.	Which of the following molecules can form
	as I, II, III, IV and V has planar geometry?	1	intramolecular hydrogen bonds?
	I II III IV V		(a) $CH_3CH_2CH_2OH$ (b) $CH_3CHOHCHOHCH_3$ (c) CH CH NH (d) CH $COOH$
	(a) IV (b) I and V	89.	Which of the following molecules has the highest
	(c) II and III (d) II, III and IV		dipole moment?
77.	Which of the following arrangements represents the		(a) CH_3COCH_3 (b) CH_3OH
	correct order of decreasing bond-angle values in NH_{3} ,		
	NF_3 and NH_4^+ ?		(c) $H = C = N(CH_3)_2$ (d) $(CH_3)_2 S = 0$
	(a) $NH_4^+ > NH_2 > NF_2$ (b) $NF_2 > NH_4^+ > NH_2$	90.	Which of the following is a polar aprotic solvent?
			(a) C_2H_5OH (b) H_2O
	(c) $NH_4^+ > NF_3 > NH_3$ (d) $NH_3 > NF_3 > NH_4^+$	01	(c) $(CH_3)_2SO$ (d) CCI_4 Examine the following resonating structures of formic
78.	Which of the following molecules possesses sp^2	91.	acid for their individual stability and then answer
	nybridized carbons only?	1	the question given below
	(a) $CH_2 = C = O$ (b) $CH_2 = C = CH_2$	0	O^{-} O^{-} O^{+}
70	(c) $CH_2 = CH - CHO$ (d) $CH_2 = CHCN$	цΪ	
19.	in the protonated formaldenyde molecule	п—С	$H = C - OH \longrightarrow H = C - OH$
1	$(CH_2 = O^+ - H \leftrightarrow CH_2 - OH)$, the C-O-H bond-angle	,	Which of the following arrangements gives he correct
	value is expected to be closer to (a) 1200 (b) 1000 (c) 1200 (d) 000		order of decreasing stability of the above mentioned
80	(a) 120° (b) 109° (c) 180° (d) 90° Which of the following has a three-centre three-	1	resonance contributors?
50.	electron π – bond?		(a) $II > I > III > IV$ (b) $I > II > III > IV$
	+	92	(C) III > II > IV > I (C) IV > III > I > II Which of the following pairs can undergo a Lewis poid
fungi	(a) $CH_2 = CH - CH_2$ (b) $CH_3CH = CH_2$	94.	base reaction?
conen	(c) $CH_a = CH - \ddot{C}H_a^-$ (d) $CH_a = CH - \dot{C}H_a$		(a) $CH_2 = CH_2 + NO_2^+ \longrightarrow$
81.	Which of the following is a linear molecule?		
eneral.	(a) N_2O (b) H_2O (c) SO_2 (d) CH_4		
82.	Which of the following molecules has the lowest		(b) $(\bigcirc) + \bigcirc H_3 - \bigcirc = \bigcirc \longrightarrow$
Chem	value of bond angle?		
/sd/77	$(a) C \Pi_4 \qquad (b) N \Pi_3 \qquad (c) \Pi_2 U \qquad (a) P \Pi_3$		(c) $C_2H_5OH + PCl_3 \longrightarrow$ (d) All of these
СH	EMICA H.O.: 2/2-B. Kasturba Gandhi Maro Nea	r Mavol	hall Crossing, Kutchery Road, Pravagrai
P	OINT Mob.: 983920)6708,	9984889076 [27]

118.	The	oxidation	state	of	sulphur	in	Caro's acid,	marshal
	acid	and oleu	m are					

(a) 6, 6 and 5 respectively (b) 4, 5 and 6 respectively

(c) 6, 6 and 6 respectively (d) 4, 6 and 6 respectively

- 119. In BFClBr molecule which of the following bond have minimum 1% s character provided to the central atom?(a) B—Cl(b) B—F
 - (c) B—Br (d) Cannot be predicted
- 120. What percentage of s character is used by the C-atom in the orbitals of CH_2F_2 molecule directed towards H-atom?

(a) 37.29% (b) 27.1% (c) 29% (d) 29.99%

121. What is the number of sp² hyrbidised atoms present in the product obtained by reaction between benzaldehyde and acetic anhydride in presence of weak base?

- 122. Which of the following statement(s) is/are correct regarding fool's gold?
 - (a) It contain 8% of gold (b) It is not an ore of copper
 - (c) It contain 0% of gold
 - (d) Chemical name of fool's gold is Iron-pyrites
- 123. Choose the correct statement(s)
 - (a) CH₃-F > CH₃-Cl > CH₃-Br > CH₃-I
 (order of bond dissociation energy of C-X bond)
 - (b) $CH_3-Cl > CH_3F > CH_3Br > CH_3I$ (order of dipole moment)
 - (c) $CH_{3}I > CH_{3}Br > CH_{3}CI > CH_{3}F$ (order of rate of S_{N}^{2})

124. Which of the following will not show test of unsaturation?

CHEMICA POINTH.O.: 2/2-B, Kasturba Gandhi Marg, Near Mayohall Crossing, Kutchery Road , Prayagraj Mob.: 9839206708, 9984889076													[29]							
022/ps/0	111. 121.	(5) (d)	112. 122.	(a) (b, c)	123.	(b) (all)	114. 124.	(a) (b)	115.	(a)	110.	(4)	117.	(၁)	118.	(C)	119.	(a)	120.	(u)
Chemis	101.	(c)	102.	(c)	103.	(a)	104.	(b)	105.	(c)	106.	(b)	107.	(c)	108.	(a)	109.	(c)	110.	(d)
try/Ge	91.	(b)	92.	(d)	93.	(b)	94.	(c)	95.	(a)	96.	(d)	97.	(a)	98.	(a)	99.	(c)	100.	.(d)
menal	81.	(a)	82.	(d)	83.	(a)	84.	(d)	85.	(d)	86.	(b)	87.	(d)	88.	(b)	89.	(d)	90.	(c)
Orga	71.	(b)	72.	(c)	73.	(d)	74.	(b)	75.	(c)	76.	(b)	77.	(a)	78.	(c)	79.	(a)	80.	(d)
nic Cl	61.	(d)	62.	(d)	63.	(d)	64.	(d)	65.	(c)	66.	(c)	67.	(c)	68.	(b)	69.	(b)	70.	(b)
hemis	51.	(d)	52.	(c)	53.	(d)	54.	(d)	55.	(d)	56.	(d)	57.	(d)	58.	(d)	59.	(c)	60.	(c)
stry)	41.	(a)	42.	(a)	43.	(a)	44.	(b)	45.	(c)	46.	(b)	47.	(d)	48.	(a)	49.	(b)	50.	(c)
	31.	(d)	32.	(d)	33.	(d)	34.	(a)	35.	(d)	36.	(b)	37.	(b)	38.	(c)	39.	(d)	40.	(c)
	21.	(c)	22.	(b)	23.	(d)	24.	(b)	25.	(c)	26.	(c)	27.	(d)	28.	(c)	29.	(c)	30.	(c)
	11.	(d)	12.	(a)	13.	(d)	14.	(d)	15.	(a)	16.	(a)	17.	(c)	18.	(b)	19.	(d)	20.	(a)
	1.	(b)	2.	(a)	3.	(a)	4.	(c)	5.	(a)	6.	(b)	7.	(c)	8.	(d)	9.	(b)	10.	(d)